These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37809766)

  • 1. Machine learning-based technique for resonance and directivity prediction of UMTS LTE band quasi Yagi antenna.
    Haque MA; Saha D; Al-Bawri SS; Paul LC; Rahman MA; Alshanketi F; Alhazmi A; Rambe AH; Zakariya MA; Ba Hashwan SS
    Heliyon; 2023 Sep; 9(9):e19548. PubMed ID: 37809766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based technique for gain and resonance prediction of mid band 5G Yagi antenna.
    Haque MA; Rahman MA; Al-Bawri SS; Yusoff Z; Sharker AH; Abdulkawi WM; Saha D; Paul LC; Zakariya MA
    Sci Rep; 2023 Aug; 13(1):12590. PubMed ID: 37537201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact Multilayer Yagi-Uda Based Antenna for IoT/5G Sensors.
    Ramos A; Varum T; Matos JN
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and optimization of pi-slotted dual-band rectangular microstrip patch antenna using surface response methodology for 5G applications.
    Ayalew LG; Asmare FM
    Heliyon; 2022 Dec; 8(12):e12030. PubMed ID: 36471855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Analysis of a Quasi-Yagi Antenna for an Indoor Location Tracking System.
    Kim SW; Noh SK; Yu HG; Choi DY
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bandwidth Enhancement and Generation of CP of Yagi-Uda-Shape Feed on a Rectangular DRA for 5G Applications.
    Bari I; Iqbal J; Ali H; Rauf A; Bilal M; Jan N; Illahi U; Arif M; Khan MA; Ghoniem RM
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System.
    Hasan MM; Faruque MRI; Islam MT
    Sci Rep; 2018 Jan; 8(1):1240. PubMed ID: 29352228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A slotted plus-shaped antenna with a DGS for 5G Sub-6 GHz/WiMAX applications.
    Chandra Paul L; Chandra Das S; Rani T; Muyeen SM; Shezan SA; Ishraque MF
    Heliyon; 2022 Dec; 8(12):e12040. PubMed ID: 36561694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antennas for Licensed Shared Access in 5G Communications with LTE Mid- and High-Band Coverage.
    Morshed KM; Karmokar DK; Esselle KP
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications.
    Marzouk M; Rhazi Y; Nejdi IH; Zerrad FE; Saih M; Ahmad S; Ghaffar A; Hussein M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Analysis of Microstrip Patch Antenna Array and Electronic Beam Steering Linear Phased Antenna Array with High Directivity for Space Applications.
    Pauliah Nadar K; Jeyaprakasam V; Tharcis Mariapushpam I; Vivekanand CV; Eswaralingam AD; Louis MT; Arul Raj JX; Ahmed Jibril H; Chellappa AS; Muthukutty RK; Gopalakrishnan S
    ACS Omega; 2023 Nov; 8(45):43197-43217. PubMed ID: 38024742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sixteen-element dual band compact array antenna for ISM/Bluetooth/Zigbee/WiMAX/WiFi-2.4/5/6 GHz applications.
    Paul LC; Ali MH; Rani T; Saha HK; Jim MTR
    Heliyon; 2022 Nov; 8(11):e11675. PubMed ID: 36439772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a Compact Dual-Band MIMO Antenna System with High-Diversity Gain Performance in Both Frequency Bands.
    Abdulkawi WM; Malik WA; Rehman SU; Aziz A; Sheta AFA; Alkanhal MA
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33916040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Compact High-Isolation Four-Element MIMO Antenna with Asymptote-Shaped Structure.
    Wu A; Tao Y; Zhang P; Zhang Z; Fang Z
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidically Frequency-Reconfigurable Quasi-Yagi Dipole Antenna.
    Shah SIH; Lim S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30181435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High gain modified Vivaldi vehicular antenna for IoV communications in 5G network.
    Kapoor A; Kumar P; Mishra R
    Heliyon; 2022 May; 8(5):e09336. PubMed ID: 35521503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wideband and compact Quasi-Yagi antenna based on spoof surface plasmon polaritons.
    Arghandeh F; Abbasi-Arand B; Hesari-Shermeh M
    Sci Rep; 2023 Jul; 13(1):11054. PubMed ID: 37422453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing a Compact Filtering Quasi-Yagi Antenna with Multiple Radiation Nulls Using Embedded Resistor-Loaded Arms.
    Zhai L; Guo Y; Xu Z; Zhang X; Chen Y; Shi J
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Development of a Wideband Planar Yagi Antenna Using Tightly Coupled Directive Element.
    Ashraf MA; Jamil K; Telba A; Alzabidi MA; Sebak AR
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33143035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-gain printed monopole antenna with dual-band characteristics using FSS-loading and top-hat structure.
    Danuor P; Moon JI; Jung YB
    Sci Rep; 2023 Jun; 13(1):9982. PubMed ID: 37340063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.