These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37810009)
1. Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions. Nefedova A; Rausalu K; Zusinaite E; Kisand V; Kook M; Smits K; Vanetsev A; Ivask A Heliyon; 2023 Sep; 9(9):e20067. PubMed ID: 37810009 [TBL] [Abstract][Full Text] [Related]
2. Mitigation of SARS-CoV-2 by Using Transition Metal Nanozeolites and Quaternary Ammonium Compounds as Antiviral Agents in Suspensions and Soft Fabric Materials. Guerrero-Arguero I; Khan SR; Henry BM; Garcia-Vilanova A; Chiem K; Ye C; Shrestha S; Knight D; Cristner M; Hill S; Waldman WJ; Dutta PK; Torrelles JB; Martinez-Sobrido L; Nagy AM Int J Nanomedicine; 2023; 18():2307-2324. PubMed ID: 37163142 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Antiviral Coatings for High-Touch Surfaces by Using Human Coronaviruses HCoV-229E and SARS-CoV-2. Butot S; Baert L; Zuber S Appl Environ Microbiol; 2021 Sep; 87(19):e0109821. PubMed ID: 34288707 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of virucidal activity of fabrics using feline coronavirus. Camero M; Lanave G; Catella C; Lucente MS; Decaro N; Martella V; Buonavoglia C J Virol Methods; 2021 Sep; 295():114214. PubMed ID: 34118297 [TBL] [Abstract][Full Text] [Related]
6. Imparting Pharmaceutical Applications to the Surface of Fabrics for Wound and Skin Care by Ultrasonic Waves. Gedanken A; Perkas N; Perelshtein I; Lipovsky A Curr Med Chem; 2018; 25(41):5739-5754. PubMed ID: 29284390 [TBL] [Abstract][Full Text] [Related]
7. Virus matrix interference on assessment of virucidal activity of high-touch surfaces designed to prevent hospital-acquired infections. Walji SD; Bruder MR; Aucoin MG Antimicrob Resist Infect Control; 2021 Sep; 10(1):133. PubMed ID: 34507617 [TBL] [Abstract][Full Text] [Related]
8. Textiles Functionalized with Copper Oxides: A Sustainable Option for Prevention of COVID-19. Román LE; Villalva C; Uribe C; Paraguay-Delgado F; Sousa J; Vigo J; Vera CM; Gómez MM; Solís JL Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956581 [TBL] [Abstract][Full Text] [Related]
9. Parsimonious methodology for synthesis of silver and copper functionalized cellulose. Patch D; O'Connor N; Meira D; Scott J; Koch I; Weber K Cellulose (Lond); 2023; 30(6):3455-3472. PubMed ID: 36994235 [TBL] [Abstract][Full Text] [Related]
10. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Qian J; Dong Q; Chun K; Zhu D; Zhang X; Mao Y; Culver JN; Tai S; German JR; Dean DP; Miller JT; Wang L; Wu T; Li T; Brozena AH; Briber RM; Milton DK; Bentley WE; Hu L Nat Nanotechnol; 2023 Feb; 18(2):168-176. PubMed ID: 36585515 [TBL] [Abstract][Full Text] [Related]
11. Scalable and Environmentally Benign Process for Smart Textile Nanofinishing. Feng J; Hontañón E; Blanes M; Meyer J; Guo X; Santos L; Paltrinieri L; Ramlawi N; Smet LC; Nirschl H; Kruis FE; Schmidt-Ott A; Biskos G ACS Appl Mater Interfaces; 2016 Jun; 8(23):14756-65. PubMed ID: 27196424 [TBL] [Abstract][Full Text] [Related]
12. Preparation of Highly Stable and Cost-Efficient Antiviral Materials for Reducing Infections and Avoiding the Transmission of Viruses such as SARS-CoV-2. Losada-Garcia N; Vazquez-Calvo A; Alcami A; Palomo JM ACS Appl Mater Interfaces; 2023 May; 15(18):22580-22589. PubMed ID: 37116104 [TBL] [Abstract][Full Text] [Related]
13. Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. Hamouda T; Ibrahim HM; Kafafy HH; Mashaly HM; Mohamed NH; Aly NM Int J Biol Macromol; 2021 Jun; 181():990-1002. PubMed ID: 33864870 [TBL] [Abstract][Full Text] [Related]
14. Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Bello-Lopez JM; Silva-Bermudez P; Prado G; Martínez A; Ibáñez-Cervantes G; Cureño-Díaz MA; Rocha-Zavaleta L; Manzo-Merino J; Almaguer-Flores A; Ramos-Vilchis C; Rodil SE Biomed Mater; 2021 Nov; 17(1):. PubMed ID: 34673548 [TBL] [Abstract][Full Text] [Related]
15. Biogenic production of silver, zinc oxide, and cuprous oxide nanoparticles, and their impregnation into textiles with antiviral activity against SARS-CoV-2. Asmat-Campos D; Rojas-Jaimes J; de Oca-Vásquez GM; Nazario-Naveda R; Delfín-Narciso D; Juárez-Cortijo L; Bayona DE; Diringer B; Pereira R; Menezes DB Sci Rep; 2023 Jun; 13(1):9772. PubMed ID: 37328549 [TBL] [Abstract][Full Text] [Related]
16. Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection. Cieślak M; Kowalczyk D; Krzyżowska M; Janicka M; Witczak E; Kamińska I Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079542 [TBL] [Abstract][Full Text] [Related]
17. Potent environmental-friendly virucidal medical textiles against coronavirus to combat infections during the COVID-19 pandemic. Chitichotpanya C; Khwanmuang P; Yamprayoonswat W; Porntheeraphat S; Jongkaewwattana A; Chitichotpanya P J Ind Text; 2022 Jun; 51(4 Suppl):6996S-7013S. PubMed ID: 38603065 [TBL] [Abstract][Full Text] [Related]
18. Virucidal Properties of Photocatalytic Coating on Glass against a Model Human Coronavirus. Álvarez ÁL; Dalton KP; Nicieza I; Abade Dos Santos FA; de la Peña P; Domínguez P; Martin-Alonso JM; Parra F Microbiol Spectr; 2022 Jun; 10(3):e0026922. PubMed ID: 35506680 [TBL] [Abstract][Full Text] [Related]
19. Metabolomic effects of CeO Kitchin KT; Stirdivant S; Robinette BL; Castellon BT; Liang X Part Fibre Toxicol; 2017 Nov; 14(1):50. PubMed ID: 29187207 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials. Imai K; Ogawa H; Bui VN; Inoue H; Fukuda J; Ohba M; Yamamoto Y; Nakamura K Antiviral Res; 2012 Feb; 93(2):225-233. PubMed ID: 22179064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]