These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37810092)

  • 1. Haar wavelets method for solving class of coupled systems of linear fractional Fredholm integro-differential equations.
    Darweesh A; Al-Khaled K; Al-Yaqeen OA
    Heliyon; 2023 Sep; 9(9):e19717. PubMed ID: 37810092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Collocation Method for Numerical Solution of Nonlinear Delay Integro-Differential Equations for Wireless Sensor Network and Internet of Things.
    Amin R; Nazir S; García-Magariño I
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient numerical technique for solution of delay Volterra-Fredholm integral equations using Haar wavelet.
    Amin R; Shah K; Asif M; Khan I
    Heliyon; 2020 Oct; 6(10):e05108. PubMed ID: 33083601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter identification of fractional order linear system based on Haar wavelet operational matrix.
    Li Y; Meng X; Zheng B; Ding Y
    ISA Trans; 2015 Nov; 59():79-84. PubMed ID: 26345708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations with applications to hematopoietic stem cell modeling.
    Mohammad M; Trounev A
    Chaos Solitons Fractals; 2020 Sep; 138():109991. PubMed ID: 32565621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations.
    Khader MM
    J Comput Nonlinear Dyn; 2013 Oct; 8(4):41018-NaN. PubMed ID: 24891846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of Haar wavelet collocation technique for fractal-fractional order problem.
    Shah K; Amin R; Abdeljawad T
    Heliyon; 2023 Jun; 9(6):e17123. PubMed ID: 37360113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal control of nonlinear fractional order delay systems governed by Fredholm integral equations based on a new fractional derivative operator.
    Marzban HR
    ISA Trans; 2023 Feb; 133():233-247. PubMed ID: 35810028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Laplace-Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations.
    Shah R; Khan H; Arif M; Kumam P
    Entropy (Basel); 2019 Mar; 21(4):. PubMed ID: 33267049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haar wavelet transform-based optimal Bayesian method for medical image fusion.
    Bhardwaj J; Nayak A
    Med Biol Eng Comput; 2020 Oct; 58(10):2397-2411. PubMed ID: 32734326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem.
    Altürk A
    Springerplus; 2016; 5(1):1962. PubMed ID: 27933241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient spline technique for solving time-fractional integro-differential equations.
    Abbas M; Aslam S; Abdullah FA; Riaz MB; Gepreel KA
    Heliyon; 2023 Sep; 9(9):e19307. PubMed ID: 37810099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Method Based on Framelets for Solving Fractional Volterra Integral Equations.
    Mohammad M; Trounev A; Cattani C
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Numerical Scheme for Solving a Fractional-Order System of Delay Differential Equations.
    Kumar M
    Int J Appl Comput Math; 2022; 8(5):262. PubMed ID: 36185949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Privacy via Haar Wavelet Transform and Gaussian Mechanism for Range Query.
    Chen D; Li Y; Chen J; Bi H; Ding X
    Comput Intell Neurosci; 2022; 2022():8139813. PubMed ID: 36131905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pertinent approach to solve nonlinear fuzzy integro-differential equations.
    Narayanamoorthy S; Sathiyapriya SP
    Springerplus; 2016; 5():449. PubMed ID: 27119053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of fractional COVID-19 model by Haar wavelet collocation Methods with real data.
    Zarin R; Humphries UW; Khan A; Raezah AA
    Math Biosci Eng; 2023 Apr; 20(6):11281-11312. PubMed ID: 37322982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method.
    Bahşı AK; Yalçınbaş S
    Springerplus; 2016; 5(1):1375. PubMed ID: 27610294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fredholm boundary-value problem for the system of fractional differential equations.
    Boichuk O; Feruk V
    Nonlinear Dyn; 2023; 111(8):7459-7468. PubMed ID: 36687007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach of fractional-order time delay system modeling based on Haar wavelet.
    Kothari K; Mehta U; Vanualailai J
    ISA Trans; 2018 Sep; 80():371-380. PubMed ID: 30055858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.