These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37810096)

  • 21. Using green finance to counteract the adverse effects of COVID-19 pandemic on renewable energy investment-The case of offshore wind power in China.
    Tu Q; Mo J; Liu Z; Gong C; Fan Y
    Energy Policy; 2021 Nov; 158():112542. PubMed ID: 34539036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Offshore wind power station (OWPS) site selection using a two-stage MCDM-based spherical fuzzy set approach.
    Wang CN; Nguyen NA; Dang TT
    Sci Rep; 2022 Mar; 12(1):4260. PubMed ID: 35277582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future.
    Bailey H; Brookes KL; Thompson PM
    Aquat Biosyst; 2014; 10():8. PubMed ID: 25250175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential visibility, growth, and technological innovation in offshore wind turbines installed in Europe.
    Bilgili M; Alphan H; Ilhan A
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27208-27226. PubMed ID: 36378387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Techno-economic analysis of an offshore wind farm on the eastern Mediterranean Sea coast.
    Yildirim A; Bilgili M; Akgün H; Ünal Ş
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):35281-35293. PubMed ID: 36527553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of an Offshore Wind Farm (OWF) on the Common Shore Crab Carcinus maenas: Tagging Pilot Experiments in the Lillgrund Offshore Wind Farm (Sweden).
    Langhamer O; Holand H; Rosenqvist G
    PLoS One; 2016; 11(10):e0165096. PubMed ID: 27780212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating technological innovation impact: an empirical analysis of the offshore wind sector.
    Shi J; Hu X; Dou S; Alemzero D; Alhassan EA
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):20105-20120. PubMed ID: 36251189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Managerial policy and economic analysis of wind-generated renewable hydrogen for light-duty vehicles: Green solution of energy crises.
    Liu J; Abbas Q; Alharthi M; Mohsin M; Rasul F; Iqbal N
    Environ Sci Pollut Res Int; 2021 Mar; 28(9):10642-10653. PubMed ID: 33098557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hydrogen issue.
    Armaroli N; Balzani V
    ChemSusChem; 2011 Jan; 4(1):21-36. PubMed ID: 21226208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerating deployment of offshore wind energy alter wind climate and reduce future power generation potentials.
    Akhtar N; Geyer B; Rockel B; Sommer PS; Schrum C
    Sci Rep; 2021 Jun; 11(1):11826. PubMed ID: 34083704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment.
    Kirchgeorg T; Weinberg I; Hörnig M; Baier R; Schmid MJ; Brockmeyer B
    Mar Pollut Bull; 2018 Nov; 136():257-268. PubMed ID: 30509806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convergence of emerging technologies: Development of a risk-based paradigm for marine mammal monitoring for offshore wind energy operations.
    Macrander AM; Brzuzy L; Raghukumar K; Preziosi D; Jones C
    Integr Environ Assess Manag; 2022 Jun; 18(4):939-949. PubMed ID: 34617664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated multi-criteria decision-making framework under uncertainty for evaluating sustainable hydrogen production strategies based on renewable energies in Iran.
    Hosseini Dehshiri SJ; Amiri M
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):46058-46073. PubMed ID: 36710312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification.
    Chien F; Ngo QT; Hsu CC; Chau KY; Mohsin M
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65960-65973. PubMed ID: 34327644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mining Nontraditional Water Sources for a Distributed Hydrogen Economy.
    Winter LR; Cooper NJ; Lee B; Patel SK; Wang L; Elimelech M
    Environ Sci Technol; 2022 Aug; 56(15):10577-10585. PubMed ID: 35829620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen Storage Technologies for Future Energy Systems.
    Preuster P; Alekseev A; Wasserscheid P
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():445-471. PubMed ID: 28592172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Review of the marine energy environment-a combination of traditional, bibliometric and PESTEL analysis.
    Agyekum EB; Khan T; Dankwa Ampah J; Giri NC; Fendzi Mbasso W; Kamel S
    Heliyon; 2024 Mar; 10(6):e27771. PubMed ID: 38524577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tribological design constraints of marine renewable energy systems.
    Wood RJ; Bahaj AS; Turnock SR; Wang L; Evans M
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4807-27. PubMed ID: 20855321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis.
    He W; Li X; Tang C; Zhou S; Lu X; Li W; Li X; Zeng X; Dong P; Zhang Y; Zhang Q
    ACS Nano; 2023 Nov; 17(22):22227-22239. PubMed ID: 37965727
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.