These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37810238)

  • 1. Diya - A universal light illumination platform for multiwell plate cultures.
    Kumar S; Anastassov S; Aoki SK; Falkenstein J; Chang CH; Frei T; Buchmann P; Argast P; Khammash M
    iScience; 2023 Oct; 26(10):107862. PubMed ID: 37810238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platforms for Optogenetic Stimulation and Feedback Control.
    Kumar S; Khammash M
    Front Bioeng Biotechnol; 2022; 10():918917. PubMed ID: 35757811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Optogenetics Experiments in Yeast Using the Automated Platform Lustro.
    Harmer ZP; McClean MN
    J Vis Exp; 2023 Aug; (198):. PubMed ID: 37590537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit.
    Harmer ZP; McClean MN
    ACS Synth Biol; 2023 Jul; 12(7):1943-1951. PubMed ID: 37434272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LITOS: a versatile LED illumination tool for optogenetic stimulation.
    Höhener TC; Landolt AE; Dessauges C; Hinderling L; Gagliardi PA; Pertz O
    Sci Rep; 2022 Jul; 12(1):13139. PubMed ID: 35907941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic tools for microbial synthetic biology.
    Chia N; Lee SY; Tong Y
    Biotechnol Adv; 2022 Oct; 59():107953. PubMed ID: 35398205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol to Fabricate Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics.
    Repina NA; Johnson HJ; McClave T; Kane RS; Schaffer DV
    STAR Protoc; 2020 Dec; 1(3):100141. PubMed ID: 33377035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of antithetic control via molecular buffering.
    Hancock EJ; Oyarzún DA
    J R Soc Interface; 2022 Mar; 19(188):20210762. PubMed ID: 35259958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Easy calibration of the Light Plate Apparatus for optogenetic experiments.
    Sweeney K; Moreno Morales N; Burmeister Z; Nimunkar AJ; McClean MN
    MethodsX; 2019; 6():1480-1488. PubMed ID: 31293905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal biomolecular integral feedback controller for robust perfect adaptation.
    Aoki SK; Lillacci G; Gupta A; Baumschlager A; Schweingruber D; Khammash M
    Nature; 2019 Jun; 570(7762):533-537. PubMed ID: 31217585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidelines for designing the antithetic feedback motif.
    Baetica AA; Leong YP; Murray RM
    Phys Biol; 2020 Aug; 17(5):055002. PubMed ID: 32217822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation.
    Frei T; Chang CH; Filo M; Arampatzis A; Khammash M
    Proc Natl Acad Sci U S A; 2022 Jun; 119(24):e2122132119. PubMed ID: 35687671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales.
    Pouzet S; Cruz-Ramón J; Le Bec M; Cordier C; Banderas A; Barral S; Castaño-Cerezo S; Lautier T; Truan G; Hersen P
    Front Bioeng Biotechnol; 2023; 11():1085268. PubMed ID: 36814715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput multicolor optogenetics in microwell plates.
    Bugaj LJ; Lim WA
    Nat Protoc; 2019 Jul; 14(7):2205-2228. PubMed ID: 31235951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells.
    Mansouri M; Lichtenstein S; Strittmatter T; Buchmann P; Fussenegger M
    Methods Mol Biol; 2020; 2173():189-199. PubMed ID: 32651919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria.
    Baumschlager A; Khammash M
    Adv Biol (Weinh); 2021 May; 5(5):e2000256. PubMed ID: 34028214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lustro: High-throughput optogenetic experiments enabled by automation and a yeast optogenetic toolkit.
    Harmer ZP; McClean MN
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid prototyping and design of cybergenetic single-cell controllers.
    Kumar S; Rullan M; Khammash M
    Nat Commun; 2021 Sep; 12(1):5651. PubMed ID: 34561433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epilepsy control using a fixed time integral super twisting sliding mode control for Pinsky-Rinzel pyramidal model through ion channels with optogenetic method.
    Rezvani-Ardakani S; Mohammad-Ali-Nezhad S; Ghasemi R
    Comput Methods Programs Biomed; 2020 Oct; 195():105665. PubMed ID: 32736006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.