These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37810360)

  • 61. A survey of drug-target interaction and affinity prediction methods via graph neural networks.
    Zhang Y; Hu Y; Han N; Yang A; Liu X; Cai H
    Comput Biol Med; 2023 Sep; 163():107136. PubMed ID: 37329615
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Combinatorial Learning of Robust Deep Graph Matching: An Embedding Based Approach.
    Wang R; Yan J; Yang X
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):6984-7000. PubMed ID: 32750800
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts.
    Mao Y; Fung KW
    J Am Med Inform Assoc; 2020 Oct; 27(10):1538-1546. PubMed ID: 33029614
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Temporal dynamics of the knowledge-mediated visual disambiguation process in humans: a magnetoencephalography study.
    Urakawa T; Ogata K; Kimura T; Kume Y; Tobimatsu S
    Eur J Neurosci; 2015 Jan; 41(2):234-42. PubMed ID: 25363137
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Co-Embedding of Nodes and Edges With Graph Neural Networks.
    Jiang X; Zhu R; Ji P; Li S
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7075-7086. PubMed ID: 33052851
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Graph representation learning in bioinformatics: trends, methods and applications.
    Yi HC; You ZH; Huang DS; Kwoh CK
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34471921
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Systematic Survey on Deep Generative Models for Graph Generation.
    Guo X; Zhao L
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):5370-5390. PubMed ID: 36251910
    [TBL] [Abstract][Full Text] [Related]  

  • 68. NameClarifier: A Visual Analytics System for Author Name Disambiguation.
    Shen Q; Wu T; Yang H; Wu Y; Qu H; Cui W
    IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):141-150. PubMed ID: 27514051
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Learning and reasoning with graph data.
    Jaeger M
    Front Artif Intell; 2023; 6():1124718. PubMed ID: 37675398
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Motif-based success scores in coauthorship networks are highly sensitive to author name disambiguation.
    Klosik DF; Bornholdt S; Hütt MT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032811. PubMed ID: 25314486
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Scaffold hopping using clique detection applied to reduced graphs.
    Barker EJ; Buttar D; Cosgrove DA; Gardiner EJ; Kitts P; Willett P; Gillet VJ
    J Chem Inf Model; 2006; 46(2):503-11. PubMed ID: 16562978
    [TBL] [Abstract][Full Text] [Related]  

  • 72. FDup: a framework for general-purpose and efficient entity deduplication of record collections.
    De Bonis M; Manghi P; Atzori C
    PeerJ Comput Sci; 2022; 8():e1058. PubMed ID: 36262137
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Relations between the set-complexity and the structure of graphs and their sub-graphs.
    Ignac TM; Sakhanenko NA; Galas DJ
    EURASIP J Bioinform Syst Biol; 2012 Sep; 2012(1):13. PubMed ID: 22995062
    [TBL] [Abstract][Full Text] [Related]  

  • 74. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery.
    Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q
    BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An experimental study of graph connectivity for unsupervised word sense disambiguation.
    Navigli R; Lapata M
    IEEE Trans Pattern Anal Mach Intell; 2010 Apr; 32(4):678-92. PubMed ID: 20224123
    [TBL] [Abstract][Full Text] [Related]  

  • 76. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Open Researcher and Contributor Identifier and other author identifiers: Perspective from Pakistan.
    Memon AR; Azim ME
    J Pak Med Assoc; 2019 Jun; 69(6):888-891. PubMed ID: 31201398
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A review of biomedical datasets relating to drug discovery: a knowledge graph perspective.
    Bonner S; Barrett IP; Ye C; Swiers R; Engkvist O; Bender A; Hoyt CT; Hamilton WL
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36151740
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Deep Denoising of Raw Biomedical Knowledge Graph From COVID-19 Literature, LitCovid, and Pubtator: Framework Development and Validation.
    Jiang C; Ngo V; Chapman R; Yu Y; Liu H; Jiang G; Zong N
    J Med Internet Res; 2022 Jul; 24(7):e38584. PubMed ID: 35658098
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Knowledge Graphs and Their Applications in Drug Discovery.
    James T; Hennig H
    Methods Mol Biol; 2024; 2716():203-221. PubMed ID: 37702941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.