These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 37810593)

  • 1. Recalcitrance to transformation, a hindrance for genome editing of legumes.
    Nivya VM; Shah JM
    Front Genome Ed; 2023; 5():1247815. PubMed ID: 37810593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Future Prospects.
    Baloglu MC; Celik Altunoglu Y; Baloglu P; Yildiz AB; Türkölmez N; Özden Çiftçi Y
    Front Genet; 2022; 13():859437. PubMed ID: 35836569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review.
    Rasheed A; Barqawi AA; Mahmood A; Nawaz M; Shah AN; Bay DH; Alahdal MA; Hassan MU; Qari SH
    Mol Biol Rep; 2022 Jun; 49(6):5595-5609. PubMed ID: 35585381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks.
    Freitas-Alves NS; Moreira-Pinto CE; Távora FTPK; Paes-de-Melo B; Arraes FBM; Lourenço-Tessutti IT; Moura SM; Oliveira AC; Morgante CV; Qi Y; Fatima Grossi-de-Sa M
    J Adv Res; 2024 Aug; ():. PubMed ID: 39163906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing in Cereals: Approaches, Applications and Challenges.
    Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic transformation of legumes: an update.
    Choudhury A; Rajam MV
    Plant Cell Rep; 2021 Oct; 40(10):1813-1830. PubMed ID: 34230986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
    Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A
    Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient and specific CRISPR-Cas9 genome editing system targeting soybean phytoene desaturase genes.
    Lu QSM; Tian L
    BMC Biotechnol; 2022 Feb; 22(1):7. PubMed ID: 35168613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Improvement of Crops Using the CRISPR/Cas System: New Target Genes].
    Ukhatova YV; Erastenkova MV; Korshikova ES; Krylova EA; Mikhailova AS; Semilet TV; Tikhonova NG; Shvachko NA; Khlestkina EK
    Mol Biol (Mosk); 2023; 57(3):387-410. PubMed ID: 37326044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples.
    Rengasamy B; Manna M; Thajuddin NB; Sathiyabama M; Sinha AK
    Physiol Mol Biol Plants; 2024 Feb; 30(2):185-198. PubMed ID: 38623165
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Song GQ; Prieto H; Orbovic V
    Front Plant Sci; 2019; 10():226. PubMed ID: 30881368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-based genome editing and functional analysis of
    Saikia B; S R; Debbarma J; Maharana J; Sastry GN; Chikkaputtaiah C
    Front Plant Sci; 2024; 15():1304381. PubMed ID: 38371406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR for Crop Improvement: An Update Review.
    Jaganathan D; Ramasamy K; Sellamuthu G; Jayabalan S; Venkataraman G
    Front Plant Sci; 2018; 9():985. PubMed ID: 30065734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A status-quo review on CRISPR-Cas9 gene editing applications in tomato.
    Chandrasekaran M; Boopathi T; Paramasivan M
    Int J Biol Macromol; 2021 Nov; 190():120-129. PubMed ID: 34474054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted genome editing in polyploids: lessons from
    Ahmad N; Fatima S; Mehmood MA; Zaman QU; Atif RM; Zhou W; Rahman MU; Gill RA
    Front Plant Sci; 2023; 14():1152468. PubMed ID: 37409308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.