BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37811199)

  • 1. Circadian disruption does not alter tumorigenesis in a mouse model of lymphoma.
    Mello RM; Pariollaud M; Lamia KA
    F1000Res; 2023; 12():49. PubMed ID: 37811199
    [No Abstract]   [Full Text] [Related]  

  • 2. CRY2 and FBXL3 Cooperatively Degrade c-MYC.
    Huber AL; Papp SJ; Chan AB; Henriksson E; Jordan SD; Kriebs A; Nguyen M; Wallace M; Li Z; Metallo CM; Lamia KA
    Mol Cell; 2016 Nov; 64(4):774-789. PubMed ID: 27840026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark.
    Ono D; Honma S; Honma K
    PLoS One; 2013; 8(11):e80615. PubMed ID: 24278295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian regulation of c-MYC in mice.
    Liu Z; Selby CP; Yang Y; Lindsey-Boltz LA; Cao X; Eynullazada K; Sancar A
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21609-21617. PubMed ID: 32817420
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Chan AB; Parico GCG; Fribourgh JL; Ibrahim LH; Bollong MJ; Partch CL; Lamia KA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34183418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of heterozygous and homozygous alleles in cryptochrome-deficient mice.
    Oda Y; Takasu NN; Ohno SN; Shirakawa Y; Sugimura M; Nakamura TJ; Nakamura W
    Neurosci Lett; 2022 Feb; 772():136415. PubMed ID: 34954114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical cholangiocarcinogenesis control by cryptochrome clock genes.
    Mteyrek A; Filipski E; Guettier C; Oklejewicz M; van der Horst GT; Okyar A; Lévi F
    Int J Cancer; 2017 Jun; 140(11):2473-2483. PubMed ID: 28224616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of circadian clock protein cryptochrome 2 promotes osteoarthritis.
    Bekki H; Duffy T; Okubo N; Olmer M; Alvarez-Garcia O; Lamia K; Kay S; Lotz M
    Osteoarthritis Cartilage; 2020 Jul; 28(7):966-976. PubMed ID: 32339698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian disruption in experimental cancer processes.
    Filipski E; Lévi F
    Integr Cancer Ther; 2009 Dec; 8(4):298-302. PubMed ID: 20042408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of prokineticin 2 expression by light and the circadian clock.
    Cheng MY; Bittman EL; Hattar S; Zhou QY
    BMC Neurosci; 2005 Mar; 6():17. PubMed ID: 15762991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2.
    Parlak GC; Baris I; Gul S; Kavakli IH
    J Biol Chem; 2023 Dec; 299(12):105451. PubMed ID: 37951306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes.
    Destici E; Jacobs EH; Tamanini F; Loos M; van der Horst GT; Oklejewicz M
    PLoS One; 2013; 8(12):e83602. PubMed ID: 24386234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo role of phosphorylation of cryptochrome 2 in the mouse circadian clock.
    Hirano A; Kurabayashi N; Nakagawa T; Shioi G; Todo T; Hirota T; Fukada Y
    Mol Cell Biol; 2014 Dec; 34(24):4464-73. PubMed ID: 25288642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling.
    Evans JA; Pan H; Liu AC; Welsh DK
    J Biol Rhythms; 2012 Dec; 27(6):443-52. PubMed ID: 23223370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deregulated expression of cryptochrome genes in human colorectal cancer.
    Mazzoccoli G; Colangelo T; Panza A; Rubino R; De Cata A; Tiberio C; Valvano MR; Pazienza V; Merla G; Augello B; Trombetta D; Storlazzi CT; Macchia G; Gentile A; Tavano F; Vinciguerra M; Bisceglia G; Rosato V; Colantuoni V; Sabatino L; Piepoli A
    Mol Cancer; 2016 Jan; 15():6. PubMed ID: 26768731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2.
    Vitaterna MH; Selby CP; Todo T; Niwa H; Thompson C; Fruechte EM; Hitomi K; Thresher RJ; Ishikawa T; Miyazaki J; Takahashi JS; Sancar A
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12114-9. PubMed ID: 10518585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circadian clock regulates rhythmic erythropoietin expression in the murine kidney.
    Sciesielski LK; Felten M; Michalick L; Kirschner KM; Lattanzi G; Jacobi CLJ; Wallach T; Lang V; Landgraf D; Kramer A; Dame C
    Kidney Int; 2021 Nov; 100(5):1071-1080. PubMed ID: 34332958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptochrome 2 (CRY2) Suppresses Proliferation and Migration and Regulates Clock Gene Network in Osteosarcoma Cells.
    Yu Y; Li Y; Zhou L; Yang G; Wang M; Hong Y
    Med Sci Monit; 2018 Jun; 24():3856-3862. PubMed ID: 29879092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus.
    Ono D; Honma S; Honma K
    Nat Commun; 2013; 4():1666. PubMed ID: 23575670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice.
    Yamanaka Y; Suzuki Y; Todo T; Honma K; Honma S
    Genes Cells; 2010 Oct; 15(10):1063-71. PubMed ID: 20825493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.