These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 378112)
1. [Effect of biologically active substances on Escherichia coli chloramphenicol acetyltransferase activity]. Solov'eva NN; Belousova II; Tereshin IM Antibiotiki; 1979 Jun; 24(6):436-40. PubMed ID: 378112 [TBL] [Abstract][Full Text] [Related]
2. [Effect of detergents on the chloramphenicol inactivation process by resistent bacteria]. Solov'eva NN; Afinogenov GE; Belousova II; Tereshin IM Antibiotiki; 1980 Feb; 25(2):101-4. PubMed ID: 6986841 [TBL] [Abstract][Full Text] [Related]
3. [Study of the mechanisms of levomycetin inactivation by the palgue causative agent and Escherichia coli with episomal and chromosomal resistance. The enzymatic acetylation of levomycetin]. Korobeĭnik NV; Lebedeva SA; Mishan'kin BN; Abramova LA; Domaradskiĭ IV Antibiotiki; 1975 Sep; (9):817-23. PubMed ID: 1101811 [TBL] [Abstract][Full Text] [Related]
4. [Cyclic 3',5'-adenosine monophosphate stimulation of chloramphenicol-acetyltransferase synthesis in bacterial cellular systems]. Boĭchenko MN; Aniskin ED Biull Eksp Biol Med; 1975 Oct; 80(10):65-6. PubMed ID: 179643 [TBL] [Abstract][Full Text] [Related]
5. [Mechanisms of Proteus resistance to chloramphenicol]. Shvidenko IG Antibiotiki; 1979 May; 24(5):345-8. PubMed ID: 375826 [TBL] [Abstract][Full Text] [Related]
6. Some properties of chloramphenicol acetyltransferase, with particular reference to the mechanism of inhibition by basic triphenylmethane dyes. Tanaka H; Izaki K; Takahashi H J Biochem; 1974 Nov; 76(5):1009-19. PubMed ID: 4616029 [No Abstract] [Full Text] [Related]
7. [Effect of biologically active compounds on the resistance of bacteria to antibiotics]. Levchenko AB; Belousova II; El'gart RE; Chistiakova AM; Tereshin IM Antibiotiki; 1975 Nov; 20(11):1002-5. PubMed ID: 817644 [TBL] [Abstract][Full Text] [Related]
8. [Makeup and properties of E. coli cells with a varying level of resistance to tetracycline]. Kuzina ZA; Belousova II; Tereshin IM Antibiotiki; 1978 Nov; 23(11):989-93. PubMed ID: 152604 [TBL] [Abstract][Full Text] [Related]
9. [Isolation and purification of the chloramphenicol-acetyltransferase from Y. pestis EV cells with extrachromosomal resistance to the antibiotic by affinity chromatography]. Korobeĭnik NV; Mishan'kin BN Antibiotiki; 1981 Jan; 26(1):28-33. PubMed ID: 6938164 [TBL] [Abstract][Full Text] [Related]
10. Resistance to fusidic acid in Escherichia coli mediated by the type I variant of chloramphenicol acetyltransferase. A plasmid-encoded mechanism involving antibiotic binding. Bennett AD; Shaw WV Biochem J; 1983 Oct; 215(1):29-38. PubMed ID: 6354181 [TBL] [Abstract][Full Text] [Related]
11. Detection of a chloramphenicol efflux system in Escherichia coli isolated from poultry carcass. Moreira MA; Oliveira JA; Teixeira LM; Moraes CA Vet Microbiol; 2005 Aug; 109(1-2):75-81. PubMed ID: 15963664 [TBL] [Abstract][Full Text] [Related]
12. Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from gram-negative bacteria. Gaffney DF; Cundliffe E; Foster TJ J Gen Microbiol; 1981 Jul; 125(1):113-21. PubMed ID: 7038031 [TBL] [Abstract][Full Text] [Related]
13. [Interaction of E.coli ribosomes with chloramphenicol. Effect of protamine hydrochloride on binding of C14-chloramphenicol by ribosomes and antibiotic inhibition of polypeptide synthesis in acellular systems]. Belousova II; Lishnevskaia EB; Tereshin IM Antibiotiki; 1973 May; 18(5):411-6. PubMed ID: 4592561 [No Abstract] [Full Text] [Related]
14. [Expression of the chloramphenicol acetyltransferase gene is under control of various promoters of E. coli and phage lambda]. Mashko SV; Podkovyrov SM; Trukhan ME; Gorovits RL; Lebedeva MI Mol Gen Mikrobiol Virusol; 1986 Apr; (4):9-16. PubMed ID: 2948120 [TBL] [Abstract][Full Text] [Related]
15. Bactericidal activity of ciprofloxacin upon Escherichia coli and Acinetobacter baumanni. Zemelman R; Vejar C; Bello H; Domínguez M; González G Rev Latinoam Microbiol; 1992; 34(4):245-8. PubMed ID: 1345113 [TBL] [Abstract][Full Text] [Related]
17. Chloramphenicol resistance in clinical isolates of enterobacteria: characterization of chloramphenicol acetyltransferases. Rivera MJ; Cabello A; Gomez-Lus R J Chemother; 1989 Jul; 1(4 Suppl):309-10. PubMed ID: 16312415 [No Abstract] [Full Text] [Related]
18. Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide. Kim SR; Rhee MS; Kim BC; Kim KH Int J Food Microbiol; 2007 Aug; 118(1):52-61. PubMed ID: 17604865 [TBL] [Abstract][Full Text] [Related]
19. [Sensitivity of Escherichia coli cell membranes to various classes of detergents]. Irkhin AI; Kondrashenko TN; Puchkov EO Mikrobiologiia; 1989; 58(2):217-21. PubMed ID: 2682143 [TBL] [Abstract][Full Text] [Related]
20. [Regulation of chloramphenicol acetyltransferase synthesis in E. coli containing R-factor]. Brana G; Gubachak I Antibiotiki; 1974 May; 19(5):390-4. PubMed ID: 4618767 [No Abstract] [Full Text] [Related] [Next] [New Search]