These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37811382)

  • 1. Porous polydimethylsiloxane films with specific surface wettability but distinct regular physical structures fabricated by 3D printing.
    He Z; Wang N; Mu L; Wang Z; Su J; Chen Y; Luo M; Wu Y; Lan X; Mao J
    Front Bioeng Biotechnol; 2023; 11():1272565. PubMed ID: 37811382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple route to morphology-controlled polydimethylsiloxane films based on particle-embedded elastomeric masters for enhanced superhydrophobicity.
    Jeong DW; Kim SJ; Park JK; Kim SH; Lee DW; Kim JM
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2770-6. PubMed ID: 24456274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles.
    Yao T; Wang C; Lin Q; Li X; Chen X; Wu J; Zhang J; Yu K; Yang B
    Nanotechnology; 2009 Feb; 20(6):065304. PubMed ID: 19417380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response Surface Optimisation of Polydimethylsiloxane (PDMS) on Borosilicate Glass and Stainless Steel (SS316) to Increase Hydrophobicity.
    Ramlan N; Zubairi SI; Maskat MY
    Molecules; 2022 May; 27(11):. PubMed ID: 35684326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
    Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D
    Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning of controllable surface wettability for printing techniques.
    Tian D; Song Y; Jiang L
    Chem Soc Rev; 2013 Jun; 42(12):5184-209. PubMed ID: 23511610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography printing to locally control wettability.
    Zheng Z; Azzaroni O; Zhou F; Huck WT
    J Am Chem Soc; 2006 Jun; 128(24):7730-1. PubMed ID: 16771474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
    Hinton TJ; Hudson A; Pusch K; Lee A; Feinberg AW
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1781-1786. PubMed ID: 27747289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PLA 3D Printing as a Straightforward and Versatile Fabrication Method for PDMS Molds.
    van der Borg G; Warner H; Ioannidis M; van den Bogaart G; Roos WH
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano- and Micro-Patterned S-, H-, and X-PDMS for Cell-Based Applications: Comparison of Wettability, Roughness, and Cell-Derived Parameters.
    Scharin-Mehlmann M; Häring A; Rommel M; Dirnecker T; Friedrich O; Frey L; Gilbert DF
    Front Bioeng Biotechnol; 2018; 6():51. PubMed ID: 29765941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing by Multiphase Silicone/Water Capillary Inks.
    Roh S; Parekh DP; Bharti B; Stoyanov SD; Velev OD
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28590510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Wettability Poly(dimethylsiloxane) Substrate for Ultrastable Conductive Three-Dimensional Woven Ag Nanowire Grids.
    Zhao C; Li FM; Zhai YF; Li S; Yu HY; Wang M
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4835-4844. PubMed ID: 36642925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporary Wettability Tuning of PCL/PDMS Micro Pattern Using the Plasma Treatments.
    Lin WC; Mohd Razali NA
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the temporal wetting of porous, surfactant-added polydimethylsiloxane (PDMS).
    Nam G; Yoon SH
    J Colloid Interface Sci; 2019 Nov; 556():503-513. PubMed ID: 31473540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO
    Yin H; Zhan F; Li Z; Huang H; Marcasuzaa P; Luo X; Feng Y; Billon L
    Biomacromolecules; 2021 Apr; 22(4):1721-1729. PubMed ID: 33666439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Write Printing of Ultraviolet-Curable Bulk Superhydrophobic Ink Material.
    Jiang R; Li Y; Chao S; Chen Y; Shao H; Guo Y; Wang X; Tang C
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37879068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.
    Karki A; Nguyen L; Sharma B; Yan Y; Chen W
    Langmuir; 2016 Apr; 32(13):3191-8. PubMed ID: 27002807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation.
    Yin Q; Guo Q; Wang Z; Chen Y; Duan H; Cheng P
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1979-1987. PubMed ID: 33351582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.