These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37811879)

  • 21. Influence of 5-Halogenation on the Base-Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of Synthetic
    Rodgers MT; Seidu YS; Israel E
    J Am Soc Mass Spectrom; 2022 Sep; 33(9):1697-1715. PubMed ID: 35921530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybridization of 2'-ribose modified mixed-sequence oligonucleotides: thermodynamic and kinetic studies.
    Sabahi A; Guidry J; Inamati GB; Manoharan M; Wittung-Stafshede P
    Nucleic Acids Res; 2001 May; 29(10):2163-70. PubMed ID: 11353086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.
    Suresh G; Priyakumar UD
    J Mol Graph Model; 2015 Sep; 61():150-9. PubMed ID: 26254870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of locked nucleic acid modifications on the thermal stability of noncanonical DNA structure.
    Bhattacharyya J; Maiti S; Muhuri S; Nakano S; Miyoshi D; Sugimoto N
    Biochemistry; 2011 Aug; 50(34):7414-25. PubMed ID: 21774551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modified bases in RNA reduce secondary structure and enhance hybridization.
    Gamper HB; Gewirtz A; Edwards J; Hou YM
    Biochemistry; 2004 Aug; 43(31):10224-36. PubMed ID: 15287750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A base-pairing model of duplex formation. I. Watson-Crick pairing geometries.
    Bashford JD; Jarvis PD
    Biopolymers; 2005 Aug; 78(6):287-97. PubMed ID: 15834953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescent DNA base modifications and substitutes: multiple fluorophore labeling and the DETEQ concept.
    Wagenknecht HA
    Ann N Y Acad Sci; 2008; 1130():122-30. PubMed ID: 18096856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of 2'-Modifications (O-Methylation, Fluorination, and Stereochemical Inversion) on the Base Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of
    Rodgers MT; Seidu YS; Israel E
    J Am Soc Mass Spectrom; 2023 Jul; 34(7):1400-1416. PubMed ID: 37294839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Peptide Nucleic Acid Hybridization Probes for Qualitative and Quantitative Analysis of Nucleic Acid Therapeutics by Capillary Electrophoresis.
    Hutanu A; Signori C; Moritz B; Gregoritza M; Rohde A; Schwarz MA
    Anal Chem; 2023 Mar; 95(11):4914-4922. PubMed ID: 36888566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unlocking the potential of chemically modified peptide nucleic acids for RNA-based therapeutics.
    Pradeep SP; Malik S; Slack FJ; Bahal R
    RNA; 2023 Apr; 29(4):434-445. PubMed ID: 36653113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Base pairing, structural and functional insights into N4-methylcytidine (m4C) and N4,N4-dimethylcytidine (m42C) modified RNA.
    Mao S; Sekula B; Ruszkowski M; Ranganathan SV; Haruehanroengra P; Wu Y; Shen F; Sheng J
    Nucleic Acids Res; 2020 Oct; 48(18):10087-10100. PubMed ID: 32941619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motifs in nucleic acids: molecular mechanics restraints for base pairing and base stacking.
    Harvey SC; Wang C; Teletchea S; Lavery R
    J Comput Chem; 2003 Jan; 24(1):1-9. PubMed ID: 12483670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative DNA base pairing through metal coordination.
    Clever GH; Shionoya M
    Met Ions Life Sci; 2012; 10():269-94. PubMed ID: 22210343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
    Takahashi S; Sugimoto N
    Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of short oligonucleotides to RNA: studies of the binding of common RNA structural motifs to isoenergetic microarrays.
    Kierzek E
    Biochemistry; 2009 Dec; 48(48):11344-56. PubMed ID: 19835418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA.
    Kladwang W; Cordero P; Das R
    RNA; 2011 Mar; 17(3):522-34. PubMed ID: 21239468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and properties of 2'-O-methyl-2-thiouridine and oligoribonucleotides containing 2'-O-methyl-2-thiouridine.
    Shohda K; Okamoto I; Wada T; Seio K; Sekine M
    Bioorg Med Chem Lett; 2000 Aug; 10(16):1795-8. PubMed ID: 10969970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybridization Properties of RNA Containing 8-Methoxyguanosine and 8-Benzyloxyguanosine.
    Baranowski DS; Kotkowiak W; Kierzek R; Pasternak A
    PLoS One; 2015; 10(9):e0137674. PubMed ID: 26353054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary Analyses of Base-Pairing Interactions in DNA and RNA Secondary Structures.
    Golden M; Murrell B; Martin D; Pybus OG; Hein J
    Mol Biol Evol; 2020 Feb; 37(2):576-592. PubMed ID: 31665393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origins of high sequence selectivity: a stopped-flow kinetics study of DNA/RNA hybridization by duplex- and triplex-forming oligonucleotides.
    Wang S; Friedman AE; Kool ET
    Biochemistry; 1995 Aug; 34(30):9774-84. PubMed ID: 7542923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.