BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37811910)

  • 1. Genomic Insights into
    Le VV; Ko SR; Oh HM; Ahn CY
    J Microbiol Biotechnol; 2023 Dec; 33(12):1615-1624. PubMed ID: 37811910
    [No Abstract]   [Full Text] [Related]  

  • 2. The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession: A mesocosm study.
    Le VV; Ko SR; Kang M; Park CY; Lee SA; Oh HM; Ahn CY
    Environ Pollut; 2022 Oct; 311():119849. PubMed ID: 35952989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects.
    Le VV; Ko SR; Kang M; Lee SA; Oh HM; Ahn CY
    Environ Pollut; 2022 Jun; 302():119079. PubMed ID: 35245623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic actions of Paucibacter aquatile B51 and its lasso peptide paucinodin toward cyanobacterial bloom-forming Microcystis aeruginosa PCC7806.
    Cha Y; Kim W; Park Y; Kim M; Son Y; Park W
    J Phycol; 2024 Feb; 60(1):152-169. PubMed ID: 38073162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review.
    Yang C; Hou X; Wu D; Chang W; Zhang X; Dai X; Du H; Zhang X; Igarashi Y; Luo F
    World J Microbiol Biotechnol; 2020 Nov; 36(12):188. PubMed ID: 33241509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paucibacter aquatile sp. nov. isolated from freshwater of the Nakdong River, Republic of Korea.
    Nam YH; Choi A; Hwang JM; Yim KJ; Kim JH; Choi GG; Chung EJ
    Arch Microbiol; 2018 Aug; 200(6):877-882. PubMed ID: 29468317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics analysis of c-di-GMP metabolism and regulation in Microcystis aeruginosa.
    Chen M; Xu CY; Wang X; Ren CY; Ding J; Li L
    BMC Genomics; 2020 Mar; 21(1):217. PubMed ID: 32151246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Trait Repertoire Enabling Cyanobacteria to Bloom Assessed through Comparative Genomic Complexity and Metatranscriptomics.
    Cao H; Shimura Y; Steffen MM; Yang Z; Lu J; Joel A; Jenkins L; Kawachi M; Yin Y; Garcia-Pichel F
    mBio; 2020 Jun; 11(3):. PubMed ID: 32605986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetic and ecophysiological diversity of Microcystis.
    Dick GJ; Duhaime MB; Evans JT; Errera RM; Godwin CM; Kharbush JJ; Nitschky HS; Powers MA; Vanderploeg HA; Schmidt KC; Smith DJ; Yancey CE; Zwiers CC; Denef VJ
    Environ Microbiol; 2021 Dec; 23(12):7278-7313. PubMed ID: 34056822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins.
    Huo D; Gan N; Geng R; Cao Q; Song L; Yu G; Li R
    Harmful Algae; 2021 Nov; 109():102106. PubMed ID: 34815019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcystis spp. and phosphorus in aquatic environments: A comprehensive review on their physiological and ecological interactions.
    Song Y; Li R; Song W; Tang Y; Sun S; Mao G
    Sci Total Environ; 2023 Jun; 878():163136. PubMed ID: 37001662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms.
    Meyer KA; Davis TW; Watson SB; Denef VJ; Berry MA; Dick GJ
    PLoS One; 2017; 12(10):e0183859. PubMed ID: 29020009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterotrophic Bacteria Dominate Catalase Expression during
    Smith DJ; Berry MA; Cory RM; Johengen TH; Kling GW; Davis TW; Dick GJ
    Appl Environ Microbiol; 2022 Jul; 88(14):e0254421. PubMed ID: 35862723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp.
    Harke MJ; Steffen MM; Gobler CJ; Otten TG; Wilhelm SW; Wood SA; Paerl HW
    Harmful Algae; 2016 Apr; 54():4-20. PubMed ID: 28073480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake of Phytoplankton-Derived Carbon and Cobalamins by Novel
    Smith DJ; Kharbush JJ; Kersten RD; Dick GJ
    Appl Environ Microbiol; 2022 Jul; 88(14):e0180321. PubMed ID: 35862730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixotrophic
    Zhang L; Wang Z; Wang N; Gu L; Sun Y; Huang Y; Chen Y; Yang Z
    Environ Sci Technol; 2020 Apr; 54(7):4609-4620. PubMed ID: 32126758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal changes in the bacterial community structure of three eutrophicated urban lakes in Mexico city, with emphasis on Microcystis spp.
    Pineda-Mendoza RM; Briones-Roblero CI; Gonzalez-Escobedo R; Rivera-Orduña FN; Martínez-Jerónimo F; Zúñiga G
    Toxicon; 2020 May; 179():8-20. PubMed ID: 32142716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River.
    Kim M; Lee J; Yang D; Park HY; Park W
    Environ Pollut; 2020 Nov; 266(Pt 2):115198. PubMed ID: 32668373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Draft Genome Sequence of Paucibacter aquatile CR182
    Chung EJ; Choi GG; Nam YH; Choi A
    Genome Announc; 2018 Apr; 6(17):. PubMed ID: 29700134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Complicated and Confusing Ecology of
    Wilhelm SW; Bullerjahn GS; McKay RML
    mBio; 2020 Jun; 11(3):. PubMed ID: 32605981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.