These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37812291)

  • 1. Modeling the influence of the external electric fields on water viscosity inside carbon nanotubes.
    Farrokhbin M; Lohrasebi A
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):93. PubMed ID: 37812291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transitions in nanostructured water confined in carbon nanotubes by external electric and magnetic fields: a molecular dynamics investigation.
    Abbaspour M; Akbarzadeh H; Salemi S; Bahmanipour L
    RSC Adv; 2021 Mar; 11(18):10532-10539. PubMed ID: 35423591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics, and morphology of nanostructured water confined between parallel graphene surfaces and in carbon nanotubes by applying magnetic and electric fields.
    Abbaspour M; Akbarzadeh H; Salemi S; Bahmanipour L
    Soft Matter; 2021 Mar; 17(11):3085-3095. PubMed ID: 33596282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of water molecules in carbon nanotubes under electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid structure and transport properties of water inside carbon nanotubes.
    Liu Y; Wang Q; Wu T; Zhang L
    J Chem Phys; 2005 Dec; 123(23):234701. PubMed ID: 16392938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen Bond Dynamics and Phase Transitions of Water inside Carbon Nanotubes.
    Srivastava A; Hassan J; Homouz D
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics and density profile of water in nanotubes as one-dimensional fluid.
    Liu Y; Wang Q; Zhang L; Wu T
    Langmuir; 2005 Dec; 21(25):12025-30. PubMed ID: 16316148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water distillation modeling by disjoint CNT-based channels under the influence of external electric fields.
    Rizi SH; Lohrasebi A
    J Mol Model; 2020 Aug; 26(9):236. PubMed ID: 32812099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water molecules in CNT-Si
    Winarto ; Yamamoto E; Yasuoka K
    J Chem Phys; 2021 Sep; 155(10):104701. PubMed ID: 34525818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of water-ethanol solutions with carbon nanotubes and electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    Phys Chem Chem Phys; 2016 Dec; 18(48):33310-33319. PubMed ID: 27897278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water–methanol separation with carbon nanotubes and electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    Nanoscale; 2015 Aug; 7(29):12659-65. PubMed ID: 26397004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of confined water inside carbon nanotubes based on studying tetrahedral order parameters.
    Srivastava A; Abedrabbo S; Hassan J; Homouz D
    Sci Rep; 2024 Jul; 14(1):15480. PubMed ID: 38969700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Transport Properties of Water-Methanol Solution through a CNT with Oscillating Electric Field.
    Wang H; Shi J; Liu G; Zhang Y; Zhang J; Li S
    J Phys Chem B; 2017 Feb; 121(5):1041-1053. PubMed ID: 28068091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger.
    Ye H; Zheng Y; Zhou L; Zhao J; Zhang H; Chen Z
    Nanotechnology; 2018 Jan; 29(2):025707. PubMed ID: 29226852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of water-alcohol mixtures using carbon nanotubes under an electric field.
    Winarto ; Yamamoto E; Yasuoka K
    Phys Chem Chem Phys; 2019 Jul; 21(28):15431-15438. PubMed ID: 31282508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density, distribution, and orientation of water molecules inside and outside carbon nanotubes.
    Thomas JA; McGaughey AJ
    J Chem Phys; 2008 Feb; 128(8):084715. PubMed ID: 18315080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field mediated separation of water-ethanol mixtures in carbon-nanotubes integrated in nanoporous graphene membranes.
    Borthakur MP; Bandyopadhyay D; Biswas G
    Faraday Discuss; 2018 Sep; 209(0):259-271. PubMed ID: 29972173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormones Nanofiltration in Carbon Nanotubes and Boron Nitride Nanotubes Using Uniform External Electric Field Through Molecular Dynamics.
    Dos Santos Cavaleiro RM; da Silva Arouche T; Martins Tanoue PS; Sá Pereira TS; de Carvalho Junior RN; Paranhos Costa FL; de Andrade Filho TS; Dos Santos Borges R; de Jesus Chaves Neto AM
    J Nanosci Nanotechnol; 2021 Nov; 21(11):5499-5509. PubMed ID: 33980360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.