These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37812291)

  • 21. Calculated Terahertz Spectra of Glycine Oligopeptide Solutions Confined in Carbon Nanotubes.
    Ling D; Zhang M; Song J; Wei D
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impacts of external electric fields on the permeation of glycerol and water molecules through aquaglyceroporin-7: molecular dynamics simulation approach.
    Rahimi Z; Lohrasebi A
    Eur Phys J E Soft Matter; 2023 Jan; 46(1):3. PubMed ID: 36656387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water electrolyte transport through corrugated carbon nanopores.
    Moghimi Kheirabadi A; Moosavi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012304. PubMed ID: 25122300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Curvature-dependent adsorption of water inside and outside armchair carbon nanotubes.
    Lei S; Paulus B; Li S; Schmidt B
    J Comput Chem; 2016 May; 37(14):1313-20. PubMed ID: 26988176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids.
    Sahu P; Ali SM; Shenoy KT
    J Chem Phys; 2015 Feb; 142(7):074501. PubMed ID: 25702017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2015 Mar; 17(11):7303-16. PubMed ID: 25698066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water diffusion inside carbon nanotubes: mutual effects of surface and confinement.
    Zheng YG; Ye HF; Zhang ZQ; Zhang HW
    Phys Chem Chem Phys; 2012 Jan; 14(2):964-71. PubMed ID: 22120002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dissociation of nitramide and methylnitramine when confined inside armchair single-walled carbon nanotubes.
    Wang L; Zou H; Yi C; Xu J; Xu W
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3298-305. PubMed ID: 21776700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influences of electric fields on the operation of Aqy1 aquaporin channels: a molecular dynamics study.
    Rahimi Z; Lohrasebi A
    Phys Chem Chem Phys; 2020 Nov; 22(44):25859-25868. PubMed ID: 33155592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy.
    Liu X; Pan X; Zhang S; Han X; Bao X
    Langmuir; 2014 Jul; 30(27):8036-45. PubMed ID: 24951088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study.
    Nelson TR; Chaban VV; Prezhdo VV; Prezhdo OV
    J Phys Chem B; 2011 May; 115(18):5260-7. PubMed ID: 21082855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of impact velocity on pressure-driven nanofluid.
    Liu H; Cao G
    J Chem Phys; 2013 Sep; 139(11):114701. PubMed ID: 24070299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electro-wetting of a nanoscale water droplet on a polar solid surface in electric fields.
    Song F; Ma L; Fan J; Chen Q; Lei G; Li BQ
    Phys Chem Chem Phys; 2018 May; 20(17):11987-11993. PubMed ID: 29671435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.
    Pérez-Hernández G; Schmidt B
    Phys Chem Chem Phys; 2013 Apr; 15(14):4995-5006. PubMed ID: 23443614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The hydration of Li
    Liu R; Jing Z; Shao Y; Zhou Y; Zhu F; Liu H
    Front Chem; 2023; 11():1103792. PubMed ID: 36817175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes.
    Hanasaki I; Nakatani A
    J Chem Phys; 2006 May; 124(17):174714. PubMed ID: 16689597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal transpiration through single walled carbon nanotubes and graphene channels.
    Thekkethala JF; Sathian SP
    J Chem Phys; 2013 Nov; 139(17):174712. PubMed ID: 24206327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entropy and the driving force for the filling of carbon nanotubes with water.
    Pascal TA; Goddard WA; Jung Y
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11794-8. PubMed ID: 21709268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.