These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37812563)

  • 1. Development of Few-Shot Learning Capabilities in Artificial Neural Networks When Learning Through Self-Supervised Interaction.
    Clay V; Pipa G; Kuhnberger KU; Konig P
    IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):209-219. PubMed ID: 37812563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning sparse and meaningful representations through embodiment.
    Clay V; König P; Kühnberger KU; Pipa G
    Neural Netw; 2021 Feb; 134():23-41. PubMed ID: 33279863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging Prior Concept Learning Improves Generalization From Few Examples in Computational Models of Human Object Recognition.
    Rule JS; Riesenhuber M
    Front Comput Neurosci; 2020; 14():586671. PubMed ID: 33510629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural representational geometry underlies few-shot concept learning.
    Sorscher B; Ganguli S; Sompolinsky H
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2200800119. PubMed ID: 36251997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-supervised learning for remote sensing scene classification under the few shot scenario.
    Alosaimi N; Alhichri H; Bazi Y; Ben Youssef B; Alajlan N
    Sci Rep; 2023 Jan; 13(1):433. PubMed ID: 36624136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-mentoring: A new deep learning pipeline to train a self-supervised U-net for few-shot learning of bio-artificial capsule segmentation.
    Deleruyelle A; Versari C; Klein J
    Comput Biol Med; 2023 Jan; 152():106454. PubMed ID: 36566624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying Self-Supervised Representation Learning for Emotion Recognition Using Physiological Signals.
    Montero Quispe KG; Utyiama DMS; Dos Santos EM; Oliveira HABF; Souto EJP
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Survey of Self-Supervised and Few-Shot Object Detection.
    Huang G; Laradji I; Vazquez D; Lacoste-Julien S; Rodriguez P
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):4071-4089. PubMed ID: 35976841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling Human-Object Interaction Recognition in the Video through Zero-Shot Learning.
    Maraghi VO; Faez K
    Comput Intell Neurosci; 2021; 2021():9922697. PubMed ID: 34211548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Supervised Learning for Few-Shot Medical Image Segmentation.
    Ouyang C; Biffi C; Chen C; Kart T; Qiu H; Rueckert D
    IEEE Trans Med Imaging; 2022 Jul; 41(7):1837-1848. PubMed ID: 35139014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting few-shot confocal endomicroscopy image recognition with feature-level MixSiam.
    Zhou J; Dong X; Liu Q
    Biomed Opt Express; 2023 Mar; 14(3):1054-1070. PubMed ID: 36950231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding.
    Liu Y; Lim H; Xie L
    BMC Bioinformatics; 2022 May; 23(Suppl 3):158. PubMed ID: 35501680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-level Semantic Feature Augmentation for One-shot Learning.
    Cheny Z; Fuy Y; Zhang Y; Jiang YG; Xue X; Sigal L
    IEEE Trans Image Process; 2019 Apr; ():. PubMed ID: 30969924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervision and Source Domain Impact on Representation Learning: A Histopathology Case Study.
    Sikaroudi M; Safarpoor A; Ghojogh B; Shafiei S; Crowley M; Tizhoosh HR
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1400-1403. PubMed ID: 33018251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering the structure of clinical EEG signals with self-supervised learning.
    Banville H; Chehab O; Hyvärinen A; Engemann DA; Gramfort A
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33181507
    [No Abstract]   [Full Text] [Related]  

  • 19. Zero-shot learning and its applications from autonomous vehicles to COVID-19 diagnosis: A review.
    Rezaei M; Shahidi M
    Intell Based Med; 2020 Dec; 3():100005. PubMed ID: 33043311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Few-shot learning in deep networks through global prototyping.
    Blaes S; Burwick T
    Neural Netw; 2017 Oct; 94():159-172. PubMed ID: 28793243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.