These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37812709)

  • 1. Identifying microscopic factors that influence ductility in disordered solids.
    Xiao H; Zhang G; Yang E; Ivancic R; Ridout S; Riggleman R; Durian DJ; Liu AJ
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2307552120. PubMed ID: 37812709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-property relationships from universal signatures of plasticity in disordered solids.
    Cubuk ED; Ivancic RJS; Schoenholz SS; Strickland DJ; Basu A; Davidson ZS; Fontaine J; Hor JL; Huang YR; Jiang Y; Keim NC; Koshigan KD; Lefever JA; Liu T; Ma XG; Magagnosc DJ; Morrow E; Ortiz CP; Rieser JM; Shavit A; Still T; Xu Y; Zhang Y; Nordstrom KN; Arratia PE; Carpick RW; Durian DJ; Fakhraai Z; Jerolmack DJ; Lee D; Li J; Riggleman R; Turner KT; Yodh AG; Gianola DS; Liu AJ
    Science; 2017 Nov; 358(6366):1033-1037. PubMed ID: 29170231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain localization and failure of disordered particle rafts with tunable ductility during tensile deformation.
    Xiao H; Ivancic RJS; Durian DJ
    Soft Matter; 2020 Sep; 16(35):8226-8236. PubMed ID: 32935714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rejuvenation and shear banding in model amorphous solids.
    Barbot A; Lerbinger M; Lemaître A; Vandembroucq D; Patinet S
    Phys Rev E; 2020 Mar; 101(3-1):033001. PubMed ID: 32289951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying structural flow defects in disordered solids using machine-learning methods.
    Cubuk ED; Schoenholz SS; Rieser JM; Malone BD; Rottler J; Durian DJ; Kaxiras E; Liu AJ
    Phys Rev Lett; 2015 Mar; 114(10):108001. PubMed ID: 25815967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Fracture Propensity in Amorphous Alumina from Its Static Structure Using Machine Learning.
    Du T; Liu H; Tang L; Sørensen SS; Bauchy M; Smedskjaer MM
    ACS Nano; 2021 Nov; 15(11):17705-17716. PubMed ID: 34723489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying structural signatures of shear banding in model polymer nanopillars.
    Ivancic RJS; Riggleman RA
    Soft Matter; 2019 Jun; 15(22):4548-4561. PubMed ID: 31119228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local structure controls the nonaffine shear and bulk moduli of disordered solids.
    Schlegel M; Brujic J; Terentjev EM; Zaccone A
    Sci Rep; 2016 Jan; 6():18724. PubMed ID: 26732406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastoplastic Approach Based on Microscopic Insights for the Steady State and Transient Dynamics of Sheared Disordered Solids.
    Liu C; Dutta S; Chaudhuri P; Martens K
    Phys Rev Lett; 2021 Apr; 126(13):138005. PubMed ID: 33861121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brittle to ductile transition in densified silica glass.
    Yuan F; Huang L
    Sci Rep; 2014 May; 4():5035. PubMed ID: 24849328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From plastic flow to brittle fracture: Role of microscopic friction in amorphous solids.
    Karimi K; Amitrano D; Weiss J
    Phys Rev E; 2019 Jul; 100(1-1):012908. PubMed ID: 31499880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding creep suppression mechanisms in polymer nanocomposites through machine learning.
    Yang E; Pressly JF; Natarajan B; Colby R; Winey KI; Riggleman RA
    Soft Matter; 2023 Oct; 19(39):7580-7590. PubMed ID: 37755065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible.
    Fan M; Wang M; Zhang K; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E; 2017 Feb; 95(2-1):022611. PubMed ID: 28297989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility.
    Laws KJ; Shamlaye KF; Granata D; Koloadin LS; Löffler JF
    Sci Rep; 2017 Jun; 7(1):3400. PubMed ID: 28611455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brittle-to-ductile transition and theoretical strength in a metal-organic framework glass.
    Yan S; Bennett TD; Feng W; Zhu Z; Yang D; Zhong Z; Qin QH
    Nanoscale; 2023 May; 15(18):8235-8244. PubMed ID: 37071115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.
    Luo J; Wang J; Bitzek E; Huang JY; Zheng H; Tong L; Yang Q; Li J; Mao SX
    Nano Lett; 2016 Jan; 16(1):105-13. PubMed ID: 26569137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling of relaxation and excess entropy in plastically deformed amorphous solids.
    Galloway KL; Ma X; Keim NC; Jerolmack DJ; Yodh AG; Arratia PE
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11887-11893. PubMed ID: 32430317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brittle-to-Ductile Transition in Metallic Glass Nanowires.
    Şopu D; Foroughi A; Stoica M; Eckert J
    Nano Lett; 2016 Jul; 16(7):4467-71. PubMed ID: 27248329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain localization in a shear transformation zone model for amorphous solids.
    Manning ML; Langer JS; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056106. PubMed ID: 18233717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.