BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37812857)

  • 1. Need for enrichment of lutetium isotope and design of a laser based separator module.
    Majumder A; Pulhani AK; Ghosh A; Singh P; Maiti N
    Appl Radiat Isot; 2023 Dec; 202():111038. PubMed ID: 37812857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of No-Carrier Added Lutetium-177 by Irradiation of Enriched Ytterbium-176.
    Tarasov VA; Andreev OI; Romanov EG; Kuznetsov RA; Kupriyanov VV; Tselishchev IV
    Curr Radiopharm; 2015; 8(2):95-106. PubMed ID: 25771378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of 177Lu at the new research reactor FRM-II: Irradiation yield of 176Lu(n,gamma)177Lu.
    Dvorakova Z; Henkelmann R; Lin X; Türler A; Gerstenberg H
    Appl Radiat Isot; 2008 Feb; 66(2):147-51. PubMed ID: 17900914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of lutetium-177 production at the WWR-K research reactor.
    Sairanbayev D; Koltochnik S; Shaimerdenov A; Chakrova Y; Gurin A; Kenzhin Y
    Appl Radiat Isot; 2021 Mar; 169():109561. PubMed ID: 33360502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical studies on lutetium isotopic selective photoionization based on a three-step ionization scheme.
    Lu X; Wang L
    Appl Radiat Isot; 2024 Aug; 210():111334. PubMed ID: 38754210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect Production of No Carrier Added (NCA) (177)Lu from Irradiation of Enriched (176)Yb: Options for Ytterbium/Lutetium Separation.
    Dash A; Chakravarty R; Knapp FF; Pillai AM
    Curr Radiopharm; 2015; 8(2):107-18. PubMed ID: 25771377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the yield of (177)Lu radionuclide produced by the cyclic irradiation technique.
    Odame Duodu G; Akaho EH; Serfor-Armah Y; Nyarko BJ; Afi Achoribo E
    Appl Radiat Isot; 2011 Mar; 69(3):588-93. PubMed ID: 21177113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutronic simulation of medical radioisotope
    Swami HL; Saxena A; Vala S; Abhangi M; Kumar R; Kumar R
    Appl Radiat Isot; 2023 May; 195():110743. PubMed ID: 36863265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the preparation of a therapeutic dose of 177Lu-labeled DOTA-TATE using indigenously produced 177Lu in medium flux reactor.
    Das T; Chakraborty S; Banerjee S; Venkatesh M
    Appl Radiat Isot; 2007 Mar; 65(3):301-8. PubMed ID: 17110119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production, quality control, and determination of human absorbed dose of no carrier added
    Salek N; Mehrabi M; Shirvani Arani S; Bahrami Samani A; Erfani M; Vosoghi S; Ghannadi Maragheh M; Shamsaei M
    J Labelled Comp Radiopharm; 2017 Jan; 60(1):20-29. PubMed ID: 27862203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theranostic Terbium Radioisotopes: Challenges in Production for Clinical Application.
    Naskar N; Lahiri S
    Front Med (Lausanne); 2021; 8():675014. PubMed ID: 34136508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of producing Uranium-232 for use as a tracer in uranium fuels.
    Rhodes J; Maldonado GI
    Appl Radiat Isot; 2022 Aug; 186():110275. PubMed ID: 35605462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of carrier-free hafnium and lutetium radionuclides produced in 16O activated terbium metal target.
    Lahir S; Banerjee K; Nayak D; Ramaswami A; Das NR
    Appl Radiat Isot; 2000 Jun; 52(6):1399-405. PubMed ID: 10855668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale production of lutetium-177m for the
    Bhardwaj R; Ponsard B; Sarilar M; Wolterbeek B; Denkova A; Serra-Crespo P
    Appl Radiat Isot; 2020 Feb; 156():108986. PubMed ID: 31786419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis.
    Rappel C; Schaumlöffel D
    Anal Chem; 2009 Jan; 81(1):385-93. PubMed ID: 19117464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo response of PSMA-617 radiolabeled with CA and NCA lutetium-177.
    Wieczorek Villas Boas CA; de Jesus Silva J; Pereira Dias LA; Brandão Freire MR; Balieiro LM; Ferreira Dos Santos CS; Vivaldini BF; Benedetto R; Vieira DP; de Queiroz Souza Passos P; Marumo MH; Teixeira LFS; Bortoleti de Araújo E
    Appl Radiat Isot; 2022 Feb; 180():110064. PubMed ID: 34923290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrum averaged cross section measurements of lutetium using standard
    Schulc M; Košťál M; Czakoj T; Novák E; Šimon J; Hynková N; Capote R
    Appl Radiat Isot; 2022 Oct; 188():110378. PubMed ID: 35841849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of [
    Guleria M; Das T; Amirdhanayagam J; Sarma HD; Dash A
    Nucl Med Biol; 2019; 78-79():31-40. PubMed ID: 31731177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary studies on (177)Lu-labeled sodium pyrophosphate (177Lu-PYP) as a potential bone-seeking radiopharmaceutical for bone pain palliation.
    Abbasi IA
    Nucl Med Biol; 2012 Aug; 39(6):763-9. PubMed ID: 22459337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron-activated theranostic radionuclides for nuclear medicine.
    Tan HY; Yeong CH; Wong YH; McKenzie M; Kasbollah A; Md Shah MN; Perkins AC
    Nucl Med Biol; 2020; 90-91():55-68. PubMed ID: 33039974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.