These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37812934)

  • 21. Dynamic analysis of naive adaptive brain-machine interfaces.
    Kowalski KC; He BD; Srinivasan L
    Neural Comput; 2013 Sep; 25(9):2373-420. PubMed ID: 23777523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning neural decoders without labels using multiple data streams.
    Peterson SM; Rao RPN; Brunton BW
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35905727
    [No Abstract]   [Full Text] [Related]  

  • 23. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain-Machine Interface Control Algorithms.
    Shanechi MM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1725-1734. PubMed ID: 28113323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning in a closed-loop brain-machine interface with distributed optogenetic cortical feedback.
    Goueytes D; Lassagne H; Shulz DE; Ego-Stengel V; Estebanez L
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36579369
    [No Abstract]   [Full Text] [Related]  

  • 27. A non-linear mapping algorithm shaping the control policy of a bidirectional brain machine interface.
    Boi F; Semprini M; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3052-3055. PubMed ID: 28268955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracting an evaluative feedback from the brain for adaptation of motor neuroprosthetic decoders.
    Mahmoudi B; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1682-5. PubMed ID: 21096396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clustering Neural Patterns in Kernel Reinforcement Learning Assists Fast Brain Control in Brain-Machine Interfaces.
    Zhang X; Libedinsky C; So R; Principe JC; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1684-1694. PubMed ID: 31403433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of a non-invasive, real-time, human-in-the-loop model of intracortical brain-computer interfaces.
    Awasthi P; Lin TH; Bae J; Miller LE; Danziger ZC
    J Neural Eng; 2022 Oct; 19(5):. PubMed ID: 36198278
    [No Abstract]   [Full Text] [Related]  

  • 31. The Effect of Counterfactual Information on Outcome Value Coding in Medial Prefrontal and Cingulate Cortex: From an Absolute to a Relative Neural Code.
    Pischedda D; Palminteri S; Coricelli G
    J Neurosci; 2020 Apr; 40(16):3268-3277. PubMed ID: 32156831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface.
    Song Z; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():690-693. PubMed ID: 36086404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of Long-Term Variability in Decoding Forelimb Trajectory Using Evolutionary Neural Networks With Error-Correction Learning.
    Yang SH; Wang HL; Lo YC; Lai HY; Chen KY; Lan YH; Kao CC; Chou C; Lin SH; Huang JW; Wang CF; Kuo CH; Chen YY
    Front Comput Neurosci; 2020; 14():22. PubMed ID: 32296323
    [No Abstract]   [Full Text] [Related]  

  • 35. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
    Dai J; Zhang P; Sun H; Qiao X; Zhao Y; Ma J; Li S; Zhou J; Wang C
    J Neural Eng; 2019 Jun; 16(3):036011. PubMed ID: 30822756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.
    Prins NW; Sanchez JC; Prasad A
    Front Neurosci; 2014; 8():111. PubMed ID: 24904257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
    Khamassi M; Enel P; Dominey PF; Procyk E
    Prog Brain Res; 2013; 202():441-64. PubMed ID: 23317844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic optimal control as a theory of brain-machine interface operation.
    Lagang M; Srinivasan L
    Neural Comput; 2013 Feb; 25(2):374-417. PubMed ID: 23148413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces.
    Cunningham JP; Nuyujukian P; Gilja V; Chestek CA; Ryu SI; Shenoy KV
    J Neurophysiol; 2011 Apr; 105(4):1932-49. PubMed ID: 20943945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.