These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 37812984)
1. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability. Wang X; Zhang D; Peng H; Yang J; Li Y; Xu J Biomater Adv; 2023 Nov; 154():213638. PubMed ID: 37812984 [TBL] [Abstract][Full Text] [Related]
2. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology. Luo C; Wang C; Wu X; Xie X; Wang C; Zhao C; Zou C; Lv F; Huang W; Liao J Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112382. PubMed ID: 34579901 [TBL] [Abstract][Full Text] [Related]
3. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Wang H; Su K; Su L; Liang P; Ji P; Wang C Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974 [TBL] [Abstract][Full Text] [Related]
4. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Jiao J; Hong Q; Zhang D; Wang M; Tang H; Yang J; Qu X; Yue B Front Bioeng Biotechnol; 2023; 11():1117954. PubMed ID: 36777251 [TBL] [Abstract][Full Text] [Related]
5. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199 [TBL] [Abstract][Full Text] [Related]
6. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: A proof-of-concept study. Jin J; Wang D; Qian H; Ruan C; Yang Y; Li D; Wang G; Zhu X; Hu Y; Lei P Biomaterials; 2025 Feb; 313():122756. PubMed ID: 39182327 [TBL] [Abstract][Full Text] [Related]
7. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair. Qin H; Wei Y; Han J; Jiang X; Yang X; Wu Y; Gou Z; Chen L J Tissue Eng Regen Med; 2022 Apr; 16(4):409-421. PubMed ID: 35156316 [TBL] [Abstract][Full Text] [Related]
8. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846 [TBL] [Abstract][Full Text] [Related]
9. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Chang B; Song W; Han T; Yan J; Li F; Zhao L; Kou H; Zhang Y Acta Biomater; 2016 Mar; 33():311-21. PubMed ID: 26802441 [TBL] [Abstract][Full Text] [Related]
10. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis. Ma L; Cheng S; Ji X; Zhou Y; Zhang Y; Li Q; Tan C; Peng F; Zhang Y; Huang W Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111303. PubMed ID: 32919664 [TBL] [Abstract][Full Text] [Related]
11. Fu J; Xiang Y; Ni M; Qu X; Zhou Y; Hao L; Zhang G; Chen J Biomed Res Int; 2020; 2020():4542302. PubMed ID: 33335923 [TBL] [Abstract][Full Text] [Related]
12. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Zhang Y; Sun N; Zhu M; Qiu Q; Zhao P; Zheng C; Bai Q; Zeng Q; Lu T Biomater Adv; 2022 Feb; 133():112651. PubMed ID: 35034817 [TBL] [Abstract][Full Text] [Related]
13. 3D-Printed Personalized Lattice Implant as an Innovative Strategy to Reconstruct Geographic Defects in Load-Bearing Bones. Li Z; Lu M; Zhang Y; Wang J; Wang Y; Gong T; He X; Luo Y; Zhou Y; Min L; Tu C Orthop Surg; 2024 Apr; 16(4):821-829. PubMed ID: 38296795 [TBL] [Abstract][Full Text] [Related]
14. [In vivo study of 3D printed porous tantalum implant on osseointegration]. Su KX; Ji P; Wang H; Li LL; Su LZ; Wang C Hua Xi Kou Qiang Yi Xue Za Zhi; 2018 Jun; 36(3):291-295. PubMed ID: 29984931 [TBL] [Abstract][Full Text] [Related]
15. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386 [TBL] [Abstract][Full Text] [Related]
16. Nano tantalum-coated 3D printed porous polylactic acid/beta-tricalcium phosphate scaffolds with enhanced biological properties for guided bone regeneration. Liu T; Li B; Chen G; Ye X; Zhang Y Int J Biol Macromol; 2022 Nov; 221():371-380. PubMed ID: 36067849 [TBL] [Abstract][Full Text] [Related]
17. 3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis. Zhao H; Shen S; Zhao L; Xu Y; Li Y; Zhuo N BMC Musculoskelet Disord; 2021 Aug; 22(1):734. PubMed ID: 34452607 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of Porous Tantalum with Low Elastic Modulus and Tunable Pore Size for Bone Repair. Liang D; Zhong C; Jiang F; Liao J; Ye H; Ren F ACS Biomater Sci Eng; 2023 Mar; 9(3):1720-1728. PubMed ID: 36780252 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects. Zhang C; Zhou Z; Liu N; Chen J; Wu J; Zhang Y; Lin K; Zhang S Front Bioeng Biotechnol; 2023; 11():1258030. PubMed ID: 37671184 [No Abstract] [Full Text] [Related]
20. Influence of structural parameters of 3D-printed triply periodic minimal surface gyroid porous scaffolds on compression performance, cell response, and bone regeneration. Wang Z; Liao B; Liu Y; Liao Y; Zhou Y; Li W J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35337. PubMed ID: 37795764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]