BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37813393)

  • 1. Broadband microwave spiral applicator (105-125 MHz) for
    Walter J; Hader M; Sengedorj A; Fietkau R; Frey B; Gaipl US
    Int J Hyperthermia; 2023; 40(1):2265590. PubMed ID: 37813393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer.
    Kaur K; Kaur A
    Electromagn Biol Med; 2023 Oct; 42(4):163-181. PubMed ID: 38156657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy.
    Hader M; Streit S; Rosin A; Gerdes T; Wadepohl M; Bekeschus S; Fietkau R; Frey B; Schlücker E; Gekle S; Gaipl US
    Cells; 2021 Jun; 10(6):. PubMed ID: 34201238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heating system with a lens applicator for 430 MHz microwave hyperthermia.
    Nikawa Y; Kikuchi M; Terakawa T; Matsuda T
    Int J Hyperthermia; 1990; 6(3):671-84. PubMed ID: 2376678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical research into hyperthermia treatment of cancer using a 430 MHz microwave heating system with a lens applicator.
    Matsuda T; Kikuchi M; Tanaka Y; Hiraoka M; Nishimura Y; Akuta K; Takahashi M; Abe M; Fuwa N; Morita K
    Int J Hyperthermia; 1991; 7(3):425-40. PubMed ID: 1919139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Clinical research on hyperthermia of cancer using microwave heating equipment of lens applicator type].
    Matsuda T; Tanaka Y; Takeshita N; Kikuchi M; Hiraoka M; Nishimura Y; Abe M; Akuta K; Takahashi M; Fuwa N
    Nihon Gan Chiryo Gakkai Shi; 1990 Aug; 25(8):1635-47. PubMed ID: 2230445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metamaterial lens applicator for microwave hyperthermia of breast cancer.
    Wang G; Gong Y
    Int J Hyperthermia; 2009; 25(6):434-45. PubMed ID: 19925323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Evolution Optimization of Microwave Focused Hyperthermia Phased Array Excitation for Targeted Breast Cancer Heating.
    Lyu C; Li W; Yang B
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial clinical results of a 430 MHz microwave hyperthermia system using a lens applicator.
    Nishimura Y; Akuta K; Hiraoka M; Masunaga S; Nagata Y; Takahashi M; Abe M; Koizumi K
    Radiother Oncol; 1990 Mar; 17(3):219-27. PubMed ID: 2157244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation-based design and characterization of a microwave applicator for MR-guided hyperthermia experimental studies in small animals.
    Faridi P; Bossmann SH; Prakash P
    Biomed Phys Eng Express; 2020 Jan; 6(1):. PubMed ID: 32999735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beam shaping for microwave waveguide hyperthermia applicators.
    Sherar MD; Liu FF; Newcombe DJ; Cooper B; Levin W; Taylor WB; Hunt JW
    Int J Radiat Oncol Biol Phys; 1993 Apr; 25(5):849-57. PubMed ID: 8478236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia.
    Lagendijk JJ
    J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave applicator for hyperthermia treatment on in vivo melanoma model.
    Togni P; Vrba J; Vannucci L
    Med Biol Eng Comput; 2010 Mar; 48(3):285-92. PubMed ID: 20033789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz.
    Chou CK; McDougall JA; Chan KW; Luk KH
    Int J Radiat Oncol Biol Phys; 1990 Oct; 19(4):1067-70. PubMed ID: 2211244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved applicator-patient coupling in microwave-induced hyperthermia.
    Nussbaum GH; Goodman RA; Bruce AA
    Med Phys; 1983; 10(6):897-8. PubMed ID: 6656702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data.
    Ryan TP; Backus VL; Coughlin CT
    Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac tissue ablation with catheter-based microwave heating.
    Rappaport C
    Int J Hyperthermia; 2004 Nov; 20(7):769-80. PubMed ID: 15675671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.