These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37813639)
1. Molecular docking Study of Nuciferine as a Tyrosinase Inhibitor and Its Therapeutic Potential for Hyperpigmentation. Veerichetty V; Saravanabavan I Genomics Inform; 2023 Sep; 21(3):e43. PubMed ID: 37813639 [TBL] [Abstract][Full Text] [Related]
2. 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. Kolbe L; Mann T; Gerwat W; Batzer J; Ahlheit S; Scherner C; Wenck H; Stäb F J Eur Acad Dermatol Venereol; 2013 Jan; 27 Suppl 1():19-23. PubMed ID: 23205541 [TBL] [Abstract][Full Text] [Related]
3. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Ghani U Eur J Med Chem; 2022 Sep; 239():114525. PubMed ID: 35717871 [TBL] [Abstract][Full Text] [Related]
4. Novel Amide Derivatives as Potent Tyrosinase Inhibitors; In-vitro, In-vivo Antimelanogenic Activity and Computational Studies. Ali A; Ashraf Z; Rafiq M; Kumar A; Jabeen F; Lee GJ; Nazir F; Ahmed M; Rhee M; Choi EH Med Chem; 2019; 15(7):715-728. PubMed ID: 30892163 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells. Ullah S; Kang D; Lee S; Ikram M; Park C; Park Y; Yoon S; Chun P; Moon HR Eur J Med Chem; 2019 Jan; 161():78-92. PubMed ID: 30347330 [TBL] [Abstract][Full Text] [Related]
6. In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme. Asadzadeh A; Sirous H; Pourfarzam M; Yaghmaei P; Afshin F Iran J Basic Med Sci; 2016 Feb; 19(2):132-44. PubMed ID: 27081457 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Nazir Y; Saeed A; Rafiq M; Afzal S; Ali A; Latif M; Zuegg J; Hussein WM; Fercher C; Barnard RT; Cooper MA; Blaskovich MAT; Ashraf Z; Ziora ZM Bioorg Med Chem Lett; 2020 Jan; 30(1):126722. PubMed ID: 31732410 [TBL] [Abstract][Full Text] [Related]
8. Identification of (Z)-2-benzylidene-dihydroimidazothiazolone derivatives as tyrosinase inhibitors: Anti-melanogenic effects and Choi H; Young Ryu I; Choi I; Ullah S; Jin Jung H; Park Y; Hwang Y; Jeong Y; Hong S; Chun P; Young Chung H; Ryong Moon H Comput Struct Biotechnol J; 2022; 20():899-912. PubMed ID: 35242283 [TBL] [Abstract][Full Text] [Related]
9. Choi I; Park Y; Ryu IY; Jung HJ; Ullah S; Choi H; Park C; Kang D; Lee S; Chun P; Young Chung H; Moon HR Comput Struct Biotechnol J; 2021; 19():37-50. PubMed ID: 33363708 [TBL] [Abstract][Full Text] [Related]
10. Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors. Radhakrishnan S; Shimmon R; Conn C; Baker A Bioorg Med Chem Lett; 2015 Oct; 25(19):4085-91. PubMed ID: 26318997 [TBL] [Abstract][Full Text] [Related]
11. p44/42 MAPK signaling is a prime target activated by phenylethyl resorcinol in its anti-melanogenic action. Kang M; Park SH; Park SJ; Oh SW; Yoo JA; Kwon K; Kim J; Yu E; Cho JY; Lee J Phytomedicine; 2019 May; 58():152877. PubMed ID: 30849679 [TBL] [Abstract][Full Text] [Related]
12. Discovery of amphotericin B, an antifungal drug as tyrosinase inhibitor with potent anti-melanogenic activity. Mahalapbutr P; Sabuakham S; Nasoontorn S; Rungrotmongkol T; Silsirivanit A; Suriya U Int J Biol Macromol; 2023 Aug; 246():125587. PubMed ID: 37379954 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of Human Tyrosinase Requires Molecular Motifs Distinctively Different from Mushroom Tyrosinase. Mann T; Gerwat W; Batzer J; Eggers K; Scherner C; Wenck H; Stäb F; Hearing VJ; Röhm KH; Kolbe L J Invest Dermatol; 2018 Jul; 138(7):1601-1608. PubMed ID: 29427586 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory Effect of Sesamolin on Melanogenesis in B16F10 Cells Determined by In Vitro and Molecular Docking Analyses. Baek SH; Kang MG; Park D Curr Pharm Biotechnol; 2020; 21(2):169-178. PubMed ID: 31612825 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and biological assessment of novel 4H-chromene-3-carbonitrile derivatives as tyrosinase inhibitors. Azimi M; Najafi Z; Bahmani A; Chehardoli G; Iraji A BMC Chem; 2024 Sep; 18(1):187. PubMed ID: 39342248 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory Effect of Curcumin-Inspired Derivatives on Tyrosinase Activity and Melanogenesis. Rocchitta G; Rozzo C; Pisano M; Fabbri D; Dettori MA; Ruzza P; Honisch C; Dallocchio R; Dessì A; Migheli R; Serra P; Delogu G Molecules; 2022 Nov; 27(22):. PubMed ID: 36432043 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory activity of soybean (Glycine max L. Merr.) Cell Culture Extract on tyrosinase activity and melanin formation in alpha-melanocyte stimulating Hormone-Induced B16-F10 melanoma cells. Bodurlar Y; Caliskan M Mol Biol Rep; 2022 Aug; 49(8):7827-7836. PubMed ID: 35733058 [TBL] [Abstract][Full Text] [Related]
18. Design, synthesis of Cinnamyl-paeonol derivatives with 1, 3-Dioxypropyl as link arm and screening of tyrosinase inhibition activity in vitro. Tang K; Jiang Y; Zhang H; Huang W; Xie Y; Deng C; Xu H; Song X; Xu H Bioorg Chem; 2021 Jan; 106():104512. PubMed ID: 33293056 [TBL] [Abstract][Full Text] [Related]
19. Acetazolamide Inhibits the Level of Tyrosinase and Melanin: An Enzyme Kinetic, In Vitro, In Vivo, and In Silico Studies. Abbas Q; Raza H; Hassan M; Phull AR; Kim SJ; Seo SY Chem Biodivers; 2017 Sep; 14(9):. PubMed ID: 28557244 [TBL] [Abstract][Full Text] [Related]
20. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus alba Wood. Chaita E; Lambrinidis G; Cheimonidi C; Agalou A; Beis D; Trougakos I; Mikros E; Skaltsounis AL; Aligiannis N Molecules; 2017 Mar; 22(4):. PubMed ID: 28333105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]