These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37813680)

  • 21. Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways.
    Yang L; Zhang Y; Guan R; Li S; Xu X; Zhang S; Xu J
    J Integr Plant Biol; 2020 Nov; 62(11):1780-1796. PubMed ID: 32449805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production.
    Schenke D; Böttcher C; Scheel D
    Plant Cell Environ; 2011 Nov; 34(11):1849-64. PubMed ID: 21707654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The R2R3-MYB transcription factor MtMYB134 orchestrates flavonol biosynthesis in Medicago truncatula.
    Naik J; Rajput R; Pucker B; Stracke R; Pandey A
    Plant Mol Biol; 2021 May; 106(1-2):157-172. PubMed ID: 33704646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis.
    Roepke J; Gordon HOW; Neil KJA; Gidda S; Mullen RT; Freixas Coutin JA; Bray-Stone D; Bozzo GG
    Plant Cell Physiol; 2017 Jun; 58(6):1030-1047. PubMed ID: 28419331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators.
    Malitsky S; Blum E; Less H; Venger I; Elbaz M; Morin S; Eshed Y; Aharoni A
    Plant Physiol; 2008 Dec; 148(4):2021-49. PubMed ID: 18829985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low Temperature-Enhanced Flavonol Synthesis Requires Light-Associated Regulatory Components in Arabidopsis thaliana.
    Bhatia C; Pandey A; Gaddam SR; Hoecker U; Trivedi PK
    Plant Cell Physiol; 2018 Oct; 59(10):2099-2112. PubMed ID: 30010959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling.
    Stracke R; Ishihara H; Huep G; Barsch A; Mehrtens F; Niehaus K; Weisshaar B
    Plant J; 2007 May; 50(4):660-77. PubMed ID: 17419845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation.
    Shih PY; Chou SJ; Müller C; Halkier BA; Deeken R; Lai EM
    Mol Plant Pathol; 2018 Mar; 19(8):1956-70. PubMed ID: 29498790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways.
    Mewis I; Tokuhisa JG; Schultz JC; Appel HM; Ulrichs C; Gershenzon J
    Phytochemistry; 2006 Nov; 67(22):2450-62. PubMed ID: 17049571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols: quercetin, kaempferol, and isorhamnetin.
    Wang Y; Cao J; Zeng S
    J Pharm Pharmacol; 2005 Jun; 57(6):751-8. PubMed ID: 15969930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture.
    Watkins JM; Hechler PJ; Muday GK
    Plant Physiol; 2014 Apr; 164(4):1707-17. PubMed ID: 24596331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis.
    Yonekura-Sakakibara K; Tohge T; Matsuda F; Nakabayashi R; Takayama H; Niida R; Watanabe-Takahashi A; Inoue E; Saito K
    Plant Cell; 2008 Aug; 20(8):2160-76. PubMed ID: 18757557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation.
    Stracke R; Jahns O; Keck M; Tohge T; Niehaus K; Fernie AR; Weisshaar B
    New Phytol; 2010 Dec; 188(4):985-1000. PubMed ID: 20731781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis thaliana β-glucosidase BGLU15 attacks flavonol 3-O-β-glucoside-7-O-α-rhamnosides.
    Roepke J; Bozzo GG
    Phytochemistry; 2015 Jan; 109():14-24. PubMed ID: 25468534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana.
    Gigolashvili T; Yatusevich R; Berger B; Müller C; Flügge UI
    Plant J; 2007 Jul; 51(2):247-61. PubMed ID: 17521412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis.
    Albinsky D; Sawada Y; Kuwahara A; Nagano M; Hirai A; Saito K; Hirai MY
    Amino Acids; 2010 Oct; 39(4):1067-75. PubMed ID: 20623150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis.
    Matsui K; Oshima Y; Mitsuda N; Sakamoto S; Nishiba Y; Walker AR; Ohme-Takagi M; Robinson SP; Yasui Y; Mori M; Takami H
    Plant Sci; 2018 Sep; 274():466-475. PubMed ID: 30080636
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Chen X; Wu Y; Yu Z; Gao Z; Ding Q; Shah SHA; Lin W; Li Y; Hou X
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Crucial Role of GA-Regulated Flavonol Biosynthesis in Root Growth of Arabidopsis.
    Tan H; Man C; Xie Y; Yan J; Chu J; Huang J
    Mol Plant; 2019 Apr; 12(4):521-537. PubMed ID: 30630075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fast and precise method to identify indolic glucosinolates and camalexin in plants by combining mass spectrometric and biological information.
    Zandalinas SI; Vives-Peris V; Gómez-Cadenas A; Arbona V
    J Agric Food Chem; 2012 Sep; 60(35):8648-58. PubMed ID: 22870889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.