These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37813703)
21. Should We Ignore, Follow, or Biopsy? Impact of Artificial Intelligence Decision Support on Breast Ultrasound Lesion Assessment. Mango VL; Sun M; Wynn RT; Ha R AJR Am J Roentgenol; 2020 Jun; 214(6):1445-1452. PubMed ID: 32319794 [No Abstract] [Full Text] [Related]
22. A computer-aided diagnosis system for breast ultrasound based on weighted BI-RADS classes. Rodríguez-Cristerna A; Gómez-Flores W; de Albuquerque Pereira WC Comput Methods Programs Biomed; 2018 Jan; 153():33-40. PubMed ID: 29157459 [TBL] [Abstract][Full Text] [Related]
23. Comparison of automated breast ultrasonography to handheld ultrasonography in detecting and diagnosing breast lesions. Jeh SK; Kim SH; Choi JJ; Jung SS; Choe BJ; Park S; Park MS Acta Radiol; 2016 Feb; 57(2):162-9. PubMed ID: 25766727 [TBL] [Abstract][Full Text] [Related]
24. Automated breast ultrasound: lesion detection and BI-RADS classification--a pilot study. Wenkel E; Heckmann M; Heinrich M; Schwab SA; Uder M; Schulz-Wendtland R; Bautz WA; Janka R Rofo; 2008 Sep; 180(9):804-8. PubMed ID: 18704878 [TBL] [Abstract][Full Text] [Related]
25. Prospective study of AI-assisted prediction of breast malignancies in physical health examinations: role of off-the-shelf AI software and comparison to radiologist performance. Ma S; Li Y; Yin J; Niu Q; An Z; Du L; Li F; Gu J Front Oncol; 2024; 14():1374278. PubMed ID: 38756651 [TBL] [Abstract][Full Text] [Related]
26. Clinical Application of Computer-Aided Diagnosis System in Breast Ultrasound: A Prospective Multicenter Study. He P; Chen W; Bai MY; Li J; Wang QQ; Fan LH; Zheng J; Liu CT; Zhang XR; Yuan XR; Song PJ; Cui LG World J Surg; 2023 Dec; 47(12):3205-3213. PubMed ID: 37805926 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound. Tan T; Platel B; Twellmann T; van Schie G; Mus R; Grivegnée A; Mann RM; Karssemeijer N Acad Radiol; 2013 Nov; 20(11):1381-8. PubMed ID: 24119350 [TBL] [Abstract][Full Text] [Related]
28. Comparisons between artificial intelligence computer-aided detection synthesized mammograms and digital mammograms when used alone and in combination with tomosynthesis images in a virtual screening setting. Uematsu T; Nakashima K; Harada TL; Nasu H; Igarashi T Jpn J Radiol; 2023 Jan; 41(1):63-70. PubMed ID: 36068450 [TBL] [Abstract][Full Text] [Related]
29. Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Diagnosis for Breast Microcalcification on Mammography. Do YA; Jang M; Yun B; Shin SU; Kim B; Kim SM Diagnostics (Basel); 2021 Aug; 11(8):. PubMed ID: 34441343 [TBL] [Abstract][Full Text] [Related]
30. Depiction of breast cancers on digital mammograms by artificial intelligence-based computer-assisted diagnosis according to cancer characteristics. Lee SE; Han K; Yoon JH; Youk JH; Kim EK Eur Radiol; 2022 Nov; 32(11):7400-7408. PubMed ID: 35499564 [TBL] [Abstract][Full Text] [Related]
31. AI-CAD for differentiating lesions presenting as calcifications only on mammography: outcome analysis incorporating the ACR BI-RADS descriptors for calcifications. Yoon J; Lee HS; Kim MJ; Park VY; Kim EK; Yoon JH Eur Radiol; 2022 Oct; 32(10):6565-6574. PubMed ID: 35748900 [TBL] [Abstract][Full Text] [Related]
32. Comparison of 3D-Automated Breast Ultrasound With Handheld Breast Ultrasound Regarding Detection and BI-RADS Characterization of Lesions in Dense Breasts: A Study of 592 Cases. Güldogan N; Yılmaz E; Arslan A; Küçükkaya F; Atila N; Arıbal E Acad Radiol; 2022 Aug; 29(8):1143-1148. PubMed ID: 34955365 [TBL] [Abstract][Full Text] [Related]
33. Diagnostic Value of Breast Lesions Between Deep Learning-Based Computer-Aided Diagnosis System and Experienced Radiologists: Comparison the Performance Between Symptomatic and Asymptomatic Patients. Xiao M; Zhao C; Li J; Zhang J; Liu H; Wang M; Ouyang Y; Zhang Y; Jiang Y; Zhu Q Front Oncol; 2020; 10():1070. PubMed ID: 32733799 [No Abstract] [Full Text] [Related]
34. Artificial intelligence computer-aided detection enhances synthesized mammograms: comparison with original digital mammograms alone and in combination with tomosynthesis images in an experimental setting. Uematsu T; Nakashima K; Harada TL; Nasu H; Igarashi T Breast Cancer; 2023 Jan; 30(1):46-55. PubMed ID: 36001270 [TBL] [Abstract][Full Text] [Related]
35. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts. Drukker K; Sennett CA; Giger ML Med Phys; 2014 Jan; 41(1):012901. PubMed ID: 24387528 [TBL] [Abstract][Full Text] [Related]
36. Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography. Choi JS; Han BK; Ko ES; Bae JM; Ko EY; Song SH; Kwon MR; Shin JH; Hahn SY Korean J Radiol; 2019 May; 20(5):749-758. PubMed ID: 30993926 [TBL] [Abstract][Full Text] [Related]
37. Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breasts: Reader Study of Mammography-Negative and Mammography-Positive Cancers. Giger ML; Inciardi MF; Edwards A; Papaioannou J; Drukker K; Jiang Y; Brem R; Brown JB AJR Am J Roentgenol; 2016 Jun; 206(6):1341-50. PubMed ID: 27043979 [TBL] [Abstract][Full Text] [Related]
38. Mammographic density assessment: comparison of radiologists, automated volumetric measurement, and artificial intelligence-based computer-assisted diagnosis. Eom HJ; Cha JH; Choi WJ; Cho SM; Jin K; Kim HH Acta Radiol; 2024 Jul; 65(7):708-715. PubMed ID: 38825883 [TBL] [Abstract][Full Text] [Related]
39. Quantitative ultrasound analysis for classification of BI-RADS category 3 breast masses. Moon WK; Lo CM; Chang JM; Huang CS; Chen JH; Chang RF J Digit Imaging; 2013 Dec; 26(6):1091-8. PubMed ID: 23494603 [TBL] [Abstract][Full Text] [Related]
40. A case-oriented web-based training system for breast cancer diagnosis. Huang Q; Huang X; Liu L; Lin Y; Long X; Li X Comput Methods Programs Biomed; 2018 Mar; 156():73-83. PubMed ID: 29428078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]