These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37814588)

  • 1. Advance of microfluidic flow cytometry enabling high-throughput characterization of single-cell electrical and structural properties.
    Huang X; Chen X; Tan H; Wang M; Li Y; Wei Y; Zhang J; Chen D; Wang J; Li Y; Chen J
    Cytometry A; 2024 Feb; 105(2):139-145. PubMed ID: 37814588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical micro flow cytometry with LSTM and its application in leukocyte differential.
    Tan H; Chen X; Huang X; Chen D; Qin X; Wang J; Chen J
    Cytometry A; 2024 Jan; 105(1):54-61. PubMed ID: 37715355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of constrictional microchannels and the recurrent neural network in single-cell protein analysis.
    Zhang T; Chen X; Chen D; Wang J; Chen J
    Front Bioeng Biotechnol; 2023; 11():1195940. PubMed ID: 37207125
    [No Abstract]   [Full Text] [Related]  

  • 4. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leukocyte differential based on an imaging and impedance flow cytometry of microfluidics coupled with deep neural networks.
    Chen X; Huang X; Zhang J; Wang M; Chen D; Li Y; Qin X; Wang J; Chen J
    Cytometry A; 2024 May; 105(5):315-322. PubMed ID: 38115230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward five-part differential of leukocytes based on electrical impedances of single cells and neural network.
    Wang M; Tan H; Li Y; Chen X; Chen D; Wang J; Chen J
    Cytometry A; 2023 May; 103(5):439-446. PubMed ID: 36271498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry.
    Honrado C; McGrath JS; Reale R; Bisegna P; Swami NS; Caselli F
    Anal Bioanal Chem; 2020 Jun; 412(16):3835-3845. PubMed ID: 32189012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells.
    Zhao Y; Wang K; Chen D; Fan B; Xu Y; Ye Y; Wang J; Chen J; Huang C
    Biosens Bioelectron; 2018 Jul; 111():138-143. PubMed ID: 29665553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering impedance cytometry signals with neural networks.
    Caselli F; Reale R; De Ninno A; Spencer D; Morgan H; Bisegna P
    Lab Chip; 2022 May; 22(9):1714-1722. PubMed ID: 35353108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells.
    Zhang Y; Zhao Y; Chen D; Wang K; Wei Y; Xu Y; Huang C; Wang J; Chen J
    Analyst; 2019 Jan; 144(3):1008-1015. PubMed ID: 30648705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic impedance-based flow cytometry.
    Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A
    Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive three-dimensional hydrodynamic focusing microfluidic impedance flow cytometer.
    Zhou Y; Wang J; Liu T; Wu M; Lan Y; Jia C; Zhao J
    Analyst; 2023 Jul; 148(14):3239-3246. PubMed ID: 37341575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative flow cytometry leveraging droplet-based constriction microchannels with high reliability and high sensitivity.
    Yang G; Yang H; Zhang T; Gao C; Chen D; Wang J; Chen J
    Cytometry A; 2023 May; 103(5):429-438. PubMed ID: 36420790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Cell Electrical Characterization Techniques.
    Mansor MA; Ahmad MR
    Int J Mol Sci; 2015 Jun; 16(6):12686-712. PubMed ID: 26053399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis.
    Yan S; Yuan D
    Talanta; 2021 Jan; 221():121401. PubMed ID: 33076055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Framework for morphometric classification of cells in imaging flow cytometry.
    Gopakumar G; Jagannadh VK; Gorthi SS; Subrahmanyam GR
    J Microsc; 2016 Mar; 261(3):307-19. PubMed ID: 26469709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization.
    Feng Y; Cheng Z; Chai H; He W; Huang L; Wang W
    Lab Chip; 2022 Jan; 22(2):240-249. PubMed ID: 34849522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inherent single-cell bioelectrical parameters of thousands of neutrophils, eosinophils and basophils derived from impedance flow cytometry.
    Wang M; Zhang J; Tan H; Chen D; Lei Y; Li Y; Wang J; Chen J
    Cytometry A; 2022 Aug; 101(8):639-647. PubMed ID: 35419939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.