These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Ratio Fluorescent Detecting of Tryptophan and Its Metabolite 5-Hydroxyindole-3-acetic Acid Relevant with Depression via Tb(III) Modified HOFs Hybrids: Further Designing Recyclable Molecular Logic Gate Connected by Back Propagation Neural Network. Zhu K; Xu X; Yan B Adv Healthc Mater; 2023 Jun; 12(15):e2203292. PubMed ID: 36772882 [TBL] [Abstract][Full Text] [Related]
44. Simultaneous imaging of latent fingerprint and quantification of nicotine residue by NaYF Zhao Z; Shen J; Wang M Nanotechnology; 2020 Apr; 31(14):145504. PubMed ID: 31860900 [TBL] [Abstract][Full Text] [Related]
45. Metal formate framework-assisted solid fluorescent material based on carbonized nanoparticles for the detection of latent fingerprints. Zhu Q; Wang W; Kong W; Chao X; Bi Y; Li Z Anal Chim Acta; 2022 May; 1209():339864. PubMed ID: 35569874 [TBL] [Abstract][Full Text] [Related]
46. A model-based method for the computation of fingerprints' orientation field. Zhou J; Gu J IEEE Trans Image Process; 2004 Jun; 13(6):821-35. PubMed ID: 15648872 [TBL] [Abstract][Full Text] [Related]
47. Magnetic perovskite nanoparticles for latent fingerprint detection. Wei T; Han J; Wang L; Tao J; Zhang H; Xu D; Su S; Fan C; Bi W; Sun C Nanoscale; 2021 Jul; 13(27):12038-12044. PubMed ID: 34231633 [TBL] [Abstract][Full Text] [Related]
48. Fingerprint registration by maximization of mutual information. Liu L; Jiang T; Yang J; Zhu C IEEE Trans Image Process; 2006 May; 15(5):1100-10. PubMed ID: 16671291 [TBL] [Abstract][Full Text] [Related]
49. Exploration of functionalized CdTe nanoparticles for latent fingerprint detection. Cheng KH; Ajimo J; Chen W J Nanosci Nanotechnol; 2008 Mar; 8(3):1170-3. PubMed ID: 18468118 [TBL] [Abstract][Full Text] [Related]
50. Bioinspired Luminescent HOF-Based Foam as Ultrafast and Ultrasensitive Pressure and Acoustic Bimodal Sensor for Human-Machine Interactive Object and Information Recognition. Xu X; Yan B Adv Mater; 2023 Sep; 35(38):e2303410. PubMed ID: 37327479 [TBL] [Abstract][Full Text] [Related]
51. Statistics of fingerprint minutiae frequency and distribution based on automatic minutiae detection method. Gao M; Tang Y; Liu H; Ma R Forensic Sci Int; 2023 Mar; 344():111572. PubMed ID: 36739852 [TBL] [Abstract][Full Text] [Related]
52. On learning to estimate the block directional image of a fingerprint using a hierarchical neural network. Nagaty KA Neural Netw; 2003 Jan; 16(1):133-44. PubMed ID: 12576112 [TBL] [Abstract][Full Text] [Related]
53. Artificial intelligence-based snakebite identification using snake images, snakebite wound images, and other modalities of information: A systematic review. Zhang J; Chen X; Song A; Li X Int J Med Inform; 2023 May; 173():105024. PubMed ID: 36848781 [TBL] [Abstract][Full Text] [Related]
54. Hydrogen-Bonded Organic Frameworks for Antibiotic Fluorescent Sensing Artificial Intelligence-Enhanced Anticounterfeiting. Yang C; Zhu K; Yan B ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39353101 [TBL] [Abstract][Full Text] [Related]
55. Binary fingerprint image thinning using template-based PCNNs. Ji L; Yi Z; Shang L; Pu X IEEE Trans Syst Man Cybern B Cybern; 2007 Oct; 37(5):1407-13. PubMed ID: 17926721 [TBL] [Abstract][Full Text] [Related]
56. Fingerprint image reconstruction from standard templates. Cappelli R; Lumini A; Maltoni D IEEE Trans Pattern Anal Mach Intell; 2007 Sep; 29(9):1489-503. PubMed ID: 17627039 [TBL] [Abstract][Full Text] [Related]