These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37814915)

  • 21. Ca
    Prabakar SJR; Sohn KS; Pyo M
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16481-16489. PubMed ID: 32186364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Metal-free Battery with Pure Ionic Liquid Electrolyte.
    Qin J; Lan Q; Liu N; Men F; Wang X; Song Z; Zhan H
    iScience; 2019 May; 15():16-27. PubMed ID: 31026666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic Liquid-Based Electrolytes for Sodium-Ion Batteries: Tuning Properties To Enhance the Electrochemical Performance of Manganese-Based Layered Oxide Cathode.
    Chagas LG; Jeong S; Hasa I; Passerini S
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22278-22289. PubMed ID: 31144802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of CO
    Benti NE; Mekonnen YS; Christensen R; Tiruye GA; Garcia-Lastra JM; Vegge T
    J Chem Phys; 2020 Feb; 152(7):074711. PubMed ID: 32087628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorinated Ether Based Electrolyte Enabling Sodium-Metal Batteries with Exceptional Cycling Stability.
    Yi Q; Lu Y; Sun X; Zhang H; Yu H; Sun C
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46965-46972. PubMed ID: 31742374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemically-Matched and Nonflammable Janus Solid Electrolyte for Lithium-Metal Batteries.
    Li C; Liu G; Wang K; Dong W; Han J; Yu Y; Min Z; Yang C; Lu Z
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39271-39281. PubMed ID: 34375074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries.
    Sun B; Xiong P; Maitra U; Langsdorf D; Yan K; Wang C; Janek J; Schröder D; Wang G
    Adv Mater; 2020 May; 32(18):e1903891. PubMed ID: 31599999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Hybrid Na//K
    Zhu Z; Shi X; Zhu D; Wang L; Lei K; Li F
    Research (Wash D C); 2019; 2019():6180615. PubMed ID: 31549072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rate-Dependent Nucleation and Growth of NaO2 in Na-O2 Batteries.
    Ortiz-Vitoriano N; Batcho TP; Kwabi DG; Han B; Pour N; Yao KP; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2015 Jul; 6(13):2636-43. PubMed ID: 26266746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive.
    Abate II; Thompson LE; Kim HC; Aetukuri NB
    J Phys Chem Lett; 2016 Jun; 7(12):2164-9. PubMed ID: 27214400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry.
    Aldous IM; Hardwick LJ
    Angew Chem Int Ed Engl; 2016 Jul; 55(29):8254-7. PubMed ID: 27240015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dendrite-Free Potassium-Oxygen Battery Based on a Liquid Alloy Anode.
    Yu W; Lau KC; Lei Y; Liu R; Qin L; Yang W; Li B; Curtiss LA; Zhai D; Kang F
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31871-31878. PubMed ID: 28849647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible Zinc Electrodeposition at -60 °C Using a Deep Eutectic Electrolyte for Low-Temperature Zinc Metal Batteries.
    Hawkins BE; Schoetz T; Gordon LW; Kt S; Wang J; Messinger RJ
    J Phys Chem Lett; 2023 Mar; 14(9):2378-2386. PubMed ID: 36848484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into Electrochemical Oxidation of NaO
    Morasch R; Kwabi DG; Tulodziecki M; Risch M; Zhang S; Shao-Horn Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4374-4381. PubMed ID: 28173703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.
    Casado N; Hilder M; Pozo-Gonzalo C; Forsyth M; Mecerreyes D
    ChemSusChem; 2017 Apr; 10(8):1783-1791. PubMed ID: 28198593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery.
    Hartmann P; Bender CL; Sann J; Dürr AK; Jansen M; Janek J; Adelhelm P
    Phys Chem Chem Phys; 2013 Jul; 15(28):11661-72. PubMed ID: 23552701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coordination-Dependent Chemical Reactivity of TFSI Anions at a Mg Metal Interface.
    Prabhakaran V; Agarwal G; Howard JD; Wi S; Shutthanandan V; Nguyen DT; Soule L; Johnson GE; Liu YS; Yang F; Feng X; Guo J; Hankins K; Curtiss LA; Mueller KT; Assary RS; Murugesan V
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7518-7528. PubMed ID: 36715357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locally Concentrated LiPF
    Hagos TT; Thirumalraj B; Huang CJ; Abrha LH; Hagos TM; Berhe GB; Bezabh HK; Cherng J; Chiu SF; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9955-9963. PubMed ID: 30789250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concentrated Nonaqueous Polyelectrolyte Solutions: High Na-Ion Transference Number and Surface-Tethered Polyanion Layer for Sodium-Metal Batteries.
    Kondou S; Sakashita Y; Morinaga A; Katayama Y; Dokko K; Watanabe M; Ueno K
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11741-11755. PubMed ID: 36808934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.