BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37814942)

  • 21. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets.
    Zhu AX; Borger DR; Kim Y; Cosgrove D; Ejaz A; Alexandrescu S; Groeschl RT; Deshpande V; Lindberg JM; Ferrone C; Sempoux C; Yau T; Poon R; Popescu I; Bauer TW; Gamblin TC; Gigot JF; Anders RA; Pawlik TM
    Ann Surg Oncol; 2014 Nov; 21(12):3827-34. PubMed ID: 24889489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stathmin1 regulates p27 expression, proliferation and drug resistance, resulting in poor clinical prognosis in cholangiocarcinoma.
    Watanabe A; Suzuki H; Yokobori T; Tsukagoshi M; Altan B; Kubo N; Suzuki S; Araki K; Wada S; Kashiwabara K; Hosouchi Y; Kuwano H
    Cancer Sci; 2014 Jun; 105(6):690-6. PubMed ID: 24708177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: a pan-tumor retrospective analysis of participants with advanced solid tumors.
    Cristescu R; Aurora-Garg D; Albright A; Xu L; Liu XQ; Loboda A; Lang L; Jin F; Rubin EH; Snyder A; Lunceford J
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35101941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutation spectrum associated with metastasis of advanced cholangiocarcinoma.
    Song H; Huang Y; Jiang X
    J Int Med Res; 2022 Jun; 50(6):3000605221102080. PubMed ID: 35726602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic Characterization of Cholangiocarcinoma in Primary Sclerosing Cholangitis Reveals Therapeutic Opportunities.
    Goeppert B; Folseraas T; Roessler S; Kloor M; Volckmar AL; Endris V; Buchhalter I; Stenzinger A; Grzyb K; Grimsrud MM; Gornicka B; von Seth E; Reynolds GM; Franke A; Gotthardt DN; Mehrabi A; Cheung A; Verheij J; Arola J; Mäkisalo H; Eide TJ; Weidemann S; Cheville JC; Mazza G; Hirschfield GM; Ponsioen CY; Bergquist A; Milkiewicz P; Lazaridis KN; Schramm C; Manns MP; Färkkilä M; Vogel A; ; Boberg KM; Schirmacher P; Karlsen TH
    Hepatology; 2020 Oct; 72(4):1253-1266. PubMed ID: 31925805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors.
    Andersen JB; Spee B; Blechacz BR; Avital I; Komuta M; Barbour A; Conner EA; Gillen MC; Roskams T; Roberts LR; Factor VM; Thorgeirsson SS
    Gastroenterology; 2012 Apr; 142(4):1021-1031.e15. PubMed ID: 22178589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive analysis of genomic alterations of Chinese hilar cholangiocarcinoma patients.
    Feng F; Wu X; Shi X; Gao Q; Wu Y; Yu Y; Cheng Q; Li B; Yi B; Liu C; Hao Q; Zhang L; Gao C; Jiang X
    Int J Clin Oncol; 2021 Apr; 26(4):717-727. PubMed ID: 33387086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MDM2 Amplification in Intrahepatic Cholangiocarcinomas: Its Relationship With Large-Duct Type Morphology and Uncommon KRAS Mutations.
    Kim SJ; Akita M; Sung YN; Fujikura K; Lee JH; Hwang S; Yu E; Otani K; Hong SM; Zen Y
    Am J Surg Pathol; 2018 Apr; 42(4):512-521. PubMed ID: 29309301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of ADAM19 and CUEDC2 expression in EHCC and their clinicopathological significance.
    Xu S; Huang S; Li D; Zou Q; Yuan Y; Yang Z
    Biomark Med; 2020 Nov; 14(16):1573-1584. PubMed ID: 32960074
    [No Abstract]   [Full Text] [Related]  

  • 30. Intraductal papillary neoplasms of the bile duct: stepwise progression to carcinoma involves common molecular pathways.
    Schlitter AM; Born D; Bettstetter M; Specht K; Kim-Fuchs C; Riener MO; Jeliazkova P; Sipos B; Siveke JT; Terris B; Zen Y; Schuster T; Höfler H; Perren A; Klöppel G; Esposito I
    Mod Pathol; 2014 Jan; 27(1):73-86. PubMed ID: 23828315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of comprehensive genomic profiling, tumor mutational burden, and PD-L1 expression to identify novel biomarkers of immunotherapy in non-small cell lung cancer.
    Shi Y; Lei Y; Liu L; Zhang S; Wang W; Zhao J; Zhao S; Dong X; Yao M; Wang K; Zhou Q
    Cancer Med; 2021 Apr; 10(7):2216-2231. PubMed ID: 33655698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups.
    Simbolo M; Fassan M; Ruzzenente A; Mafficini A; Wood LD; Corbo V; Melisi D; Malleo G; Vicentini C; Malpeli G; Antonello D; Sperandio N; Capelli P; Tomezzoli A; Iacono C; Lawlor RT; Bassi C; Hruban RH; Guglielmi A; Tortora G; de Braud F; Scarpa A
    Oncotarget; 2014 May; 5(9):2839-52. PubMed ID: 24867389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice.
    Kasuga A; Semba T; Sato R; Nobusue H; Sugihara E; Takaishi H; Kanai T; Saya H; Arima Y
    Cancer Sci; 2021 May; 112(5):1822-1838. PubMed ID: 33068050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention.
    Lowery MA; Ptashkin R; Jordan E; Berger MF; Zehir A; Capanu M; Kemeny NE; O'Reilly EM; El-Dika I; Jarnagin WR; Harding JJ; D'Angelica MI; Cercek A; Hechtman JF; Solit DB; Schultz N; Hyman DM; Klimstra DS; Saltz LB; Abou-Alfa GK
    Clin Cancer Res; 2018 Sep; 24(17):4154-4161. PubMed ID: 29848569
    [No Abstract]   [Full Text] [Related]  

  • 35. Correlation between KRAS gene mutations and linicopathological features of patients with intrahepatic cholangiocarcinoma.
    Wang J; Xu MX; Wang LQ; Li HY; Wang ZL; Li LJ
    J Biol Regul Homeost Agents; 2019; 33(5):1551-1557. PubMed ID: 31635679
    [No Abstract]   [Full Text] [Related]  

  • 36. Clinical predominance of whole-exome sequencing to evaluate microsatellite instability status.
    Takamatsu R; Nakamura K; Suzuki O; Okada C; Mori R; Kawano R; Hayashi H; Ishikawa M; Aimono E; Nohara S; Tanishima S; Ueki A; Ishida H; Nishihara H
    Cancer Sci; 2023 Jul; 114(7):2848-2859. PubMed ID: 37119014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications.
    Churi CR; Shroff R; Wang Y; Rashid A; Kang HC; Weatherly J; Zuo M; Zinner R; Hong D; Meric-Bernstam F; Janku F; Crane CH; Mishra L; Vauthey JN; Wolff RA; Mills G; Javle M
    PLoS One; 2014; 9(12):e115383. PubMed ID: 25536104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of AKT1 and CDH1 mutations predicts primary resistance to immunotherapy in dMMR/MSI-H gastrointestinal cancer.
    Wang Z; Zhang Q; Qi C; Bai Y; Zhao F; Chen H; Li Z; Wang X; Chen M; Gong J; Peng Z; Zhang X; Cai J; Chen S; Zhao X; Shen L; Li J
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35705314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of computational determination of microsatellite status using whole exome sequencing data from colorectal cancer patients.
    Johansen AFB; Kassentoft CG; Knudsen M; Laursen MB; Madsen AH; Iversen LH; Sunesen KG; Rasmussen MH; Andersen CL
    BMC Cancer; 2019 Oct; 19(1):971. PubMed ID: 31638937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutation analysis and copy number changes of KRAS and BRAF genes in Taiwanese cases of biliary tract cholangiocarcinoma.
    Huang WC; Tsai CC; Chan CC
    J Formos Med Assoc; 2017 Jun; 116(6):464-468. PubMed ID: 27745798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.