These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37815107)

  • 1. Why Na+ has higher propensity than K+ to condense DNA in a crowded environment.
    Kolesnikov ES; Gushchin IY; Zhilyaev PA; Onufriev AV
    J Chem Phys; 2023 Oct; 159(14):. PubMed ID: 37815107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic, steric, and hydration interactions favor Na(+) condensation around DNA compared with K(+).
    Savelyev A; Papoian GA
    J Am Chem Soc; 2006 Nov; 128(45):14506-18. PubMed ID: 17090034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-shell model of ion-induced nucleic acid condensation.
    Tolokh IS; Drozdetski AV; Pollack L; Baker NA; Onufriev AV
    J Chem Phys; 2016 Apr; 144(15):155101. PubMed ID: 27389241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.
    Owczarzy R; Moreira BG; You Y; Behlke MA; Walder JA
    Biochemistry; 2008 May; 47(19):5336-53. PubMed ID: 18422348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water and ion binding around r(UpA)12 and d(TpA)12 oligomers--comparison with RNA and DNA (CpG)12 duplexes.
    Auffinger P; Westhof E
    J Mol Biol; 2001 Feb; 305(5):1057-72. PubMed ID: 11162114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual similarity of DNA solvation dynamics in high-salinity crowding with divalent cations of varying concentrations.
    Sardana D; Alam P; Yadav K; Clovis NS; Kumar P; Sen S
    Phys Chem Chem Phys; 2023 Oct; 25(40):27744-27755. PubMed ID: 37814577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the chemical environment of the DNA guanine quadruplex on the free energy of binding of Na and K ions.
    Sharawy M; Consta S
    J Chem Phys; 2018 Dec; 149(22):225102. PubMed ID: 30553268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of monovalent counterion binding to random-sequence, double-stranded DNA using the replacement ion method.
    Stellwagen E; Dong Q; Stellwagen NC
    Biochemistry; 2007 Feb; 46(7):2050-8. PubMed ID: 17253778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A compact form of DNA in solution. III. Influence of the ion composition of the solution on the compactization process of double-stranded DNA in the presence of peg].
    Evdokimov IuM; Salianov VI; Varshavskiĭ IaM
    Mol Biol (Mosk); 1975; 9(4):563-73. PubMed ID: 1214800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive binding of Mg2+, Ca2+, Na+, and K+ ions to DNA in oriented DNA fibers: experimental and Monte Carlo simulation results.
    Korolev N; Lyubartsev AP; Rupprecht A; Nordenskiöld L
    Biophys J; 1999 Nov; 77(5):2736-49. PubMed ID: 10545373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicit ions/implicit water generalized Born model for nucleic acids.
    Tolokh IS; Thomas DG; Onufriev AV
    J Chem Phys; 2018 May; 148(19):195101. PubMed ID: 30307229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment.
    Zinchenko AA; Yoshikawa K
    Biophys J; 2005 Jun; 88(6):4118-23. PubMed ID: 15778438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why double-stranded RNA resists condensation.
    Tolokh IS; Pabit SA; Katz AM; Chen Y; Drozdetski A; Baker N; Pollack L; Onufriev AV
    Nucleic Acids Res; 2014; 42(16):10823-31. PubMed ID: 25123663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition among Li(+), Na(+), K(+), and Rb(+) monovalent ions for DNA in molecular dynamics simulations using the additive CHARMM36 and Drude polarizable force fields.
    Savelyev A; MacKerell AD
    J Phys Chem B; 2015 Mar; 119(12):4428-40. PubMed ID: 25751286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion pairing as a possible clue for discriminating between sodium and potassium in biological and other complex environments.
    Jagoda-Cwiklik B; Vacha R; Lund M; Srebro M; Jungwirth P
    J Phys Chem B; 2007 Dec; 111(51):14077-9. PubMed ID: 18052278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive substitution of hexammine cobalt(III) for Na+ and K+ ions in oriented DNA fibers.
    Korolev N; Lyubartsev AP; Rupprecht A; Nordenskiöld L
    Biopolymers; 2001 Mar; 58(3):268-78. PubMed ID: 11169387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the Poisson Boltzmann polyelectrolyte model for analysis of equilibria between single-, double-, and triple-stranded polynucleotides in the presence of K(+), Na(+), and Mg(2+) ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    J Biomol Struct Dyn; 2002 Oct; 20(2):275-90. PubMed ID: 12354079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyionic charge density plays a key role in differential recognition of mobile ions by biopolymers.
    Savelyev A; Papoian GA
    J Phys Chem B; 2008 Jul; 112(30):9135-45. PubMed ID: 18597519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study.
    Pan F; Roland C; Sagui C
    Nucleic Acids Res; 2014 Dec; 42(22):13981-96. PubMed ID: 25428372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validating affinities for ion-lipid association from simulation against experiment.
    Klasczyk B; Knecht V
    J Phys Chem A; 2011 Sep; 115(38):10587-95. PubMed ID: 21859136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.