These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37815602)

  • 1. A clock for all seasons in the subterranean.
    Oda GA; Valentinuzzi VS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):677-689. PubMed ID: 37815602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daylength Shapes Entrainment Patterns to Artificial Photoperiods in a Subterranean Rodent.
    Improta GC; Flôres DEFL; Oda GA; Valentinuzzi VS
    J Biol Rhythms; 2022 Jun; 37(3):283-295. PubMed ID: 35403483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telling the Seasons Underground: The Circadian Clock and Ambient Temperature Shape Light Exposure and Photoperiodism in a Subterranean Rodent.
    Flôres DEFL; Jannetti MG; Improta GC; Tachinardi P; Valentinuzzi VS; Oda GA
    Front Physiol; 2021; 12():738471. PubMed ID: 34658922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A clock for all seasons.
    Helfrich-Förster C; Rieger D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):473-480. PubMed ID: 38896260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding.
    Schmal C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):549-564. PubMed ID: 37659985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.
    Tomotani BM; Flores DE; Tachinardi P; Paliza JD; Oda GA; Valentinuzzi VS
    PLoS One; 2012; 7(5):e37918. PubMed ID: 22649565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling natural photic entrainment in a subterranean rodent (Ctenomys aff. knighti), the Tuco-Tuco.
    Flôres DE; Tomotani BM; Tachinardi P; Oda GA; Valentinuzzi VS
    PLoS One; 2013; 8(7):e68243. PubMed ID: 23874562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrainment of circadian rhythms to irregular light/dark cycles: a subterranean perspective.
    Flôres DE; Jannetti MG; Valentinuzzi VS; Oda GA
    Sci Rep; 2016 Oct; 6():34264. PubMed ID: 27698436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus.
    Evans JA; Schwartz WJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):503-511. PubMed ID: 37481773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erwin Bünning and Wolfgang Engelmann: establishing the involvement of the circadian clock in photoperiodism.
    Helfrich-Förster C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):481-493. PubMed ID: 38805044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects.
    Bradshaw WE; Holzapfel CM
    J Biol Rhythms; 2010 Jun; 25(3):155-65. PubMed ID: 20484687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii).
    Valentinuzzi VS; Oda GA; Araujo JF; Ralph MR
    Chronobiol Int; 2009 Jan; 26(1):14-27. PubMed ID: 19142755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A metabolic daylength measurement system mediates winter photoperiodism in plants.
    Liu W; Feke A; Leung CC; Tarté DA; Yuan W; Vanderwall M; Sager G; Wu X; Schear A; Clark DA; Thines BC; Gendron JM
    Dev Cell; 2021 Sep; 56(17):2501-2515.e5. PubMed ID: 34407427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering time measurement: the role of circadian 'clock' genes and formal experimentation in insect photoperiodism.
    Saunders DS; Bertossa RC
    J Insect Physiol; 2011 May; 57(5):557-66. PubMed ID: 21295039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output.
    Tackenberg MC; McMahon DG
    Neural Plast; 2018; 2018():8217345. PubMed ID: 29552032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations.
    Hidalgo S; Chiu JC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):585-599. PubMed ID: 37584703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A four-oscillator model of seasonally adapted morning and evening activities in Drosophila melanogaster.
    Yoshii T; Saito A; Yokosako T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):527-534. PubMed ID: 37217625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keeping time without a spine: what can the insect clock teach us about seasonal adaptation?
    Denlinger DL; Hahn DA; Merlin C; Holzapfel CM; Bradshaw WE
    Philos Trans R Soc Lond B Biol Sci; 2017 Nov; 372(1734):. PubMed ID: 28993500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.