These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37815644)
21. Survival of Isolates of the US-22, US-23, and US-24 Clonal Lineages of Phytophthora infestans by Asexual Means in Tomato Seed at Cold Temperatures. Frost KE; Seidl Johnson AC; Gevens AJ Plant Dis; 2016 Jan; 100(1):180-187. PubMed ID: 30688576 [TBL] [Abstract][Full Text] [Related]
23. Expansion of sesquiterpene biosynthetic gene clusters in pepper confers nonhost resistance to the Irish potato famine pathogen. Lee HA; Kim S; Kim S; Choi D New Phytol; 2017 Aug; 215(3):1132-1143. PubMed ID: 28631815 [TBL] [Abstract][Full Text] [Related]
24. Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. Lim S; Borza T; Peters RD; Coffin RH; Al-Mughrabi KI; Pinto DM; Wang-Pruski G J Proteomics; 2013 Nov; 93():207-23. PubMed ID: 23542353 [TBL] [Abstract][Full Text] [Related]
25. Biocontrol mechanism of Myxococcus xanthus B25-I-1 against Phytophthora infestans. Wu Z; Cui H; Sun Z; Liu H Pestic Biochem Physiol; 2021 Jun; 175():104832. PubMed ID: 33993957 [TBL] [Abstract][Full Text] [Related]
26. Proteomic Analysis of Resjö S; Brus M; Ali A; Meijer HJG; Sandin M; Govers F; Levander F; Grenville-Briggs L; Andreasson E Mol Cell Proteomics; 2017 Nov; 16(11):1958-1971. PubMed ID: 28935716 [TBL] [Abstract][Full Text] [Related]
27. Lysophosphatidylcholine 17:1 from the Leaf Surface of the Wild Potato Species Gorzolka K; Perino EHB; Lederer S; Smolka U; Rosahl S J Agric Food Chem; 2021 May; 69(20):5607-5617. PubMed ID: 33988025 [TBL] [Abstract][Full Text] [Related]
28. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. King R; Urban M; Hammond-Kosack MC; Hassani-Pak K; Hammond-Kosack KE BMC Genomics; 2015 Jul; 16(1):544. PubMed ID: 26198851 [TBL] [Abstract][Full Text] [Related]
29. Nicotiana benthamiana calreticulin 3a is required for the ethylene-mediated production of phytoalexins and disease resistance against oomycete pathogen Phytophthora infestans. Matsukawa M; Shibata Y; Ohtsu M; Mizutani A; Mori H; Wang P; Ojika M; Kawakita K; Takemoto D Mol Plant Microbe Interact; 2013 Aug; 26(8):880-92. PubMed ID: 23617417 [TBL] [Abstract][Full Text] [Related]
30. Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans. Win J; Kanneganti TD; Torto-Alalibo T; Kamoun S Fungal Genet Biol; 2006 Jan; 43(1):20-33. PubMed ID: 16380277 [TBL] [Abstract][Full Text] [Related]
31. Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. Cheng JT; Cao F; Chen XA; Li YQ; Mao XM BMC Genomics; 2020 Jun; 21(1):424. PubMed ID: 32580753 [TBL] [Abstract][Full Text] [Related]
32. Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline. Fernandes I; Alves A; Correia A; Devreese B; Esteves AC Fungal Biol; 2014; 118(5-6):516-23. PubMed ID: 24863480 [TBL] [Abstract][Full Text] [Related]
34. Whole-genome sequencing of the endemic Antarctic fungus Antarctomyces pellizariae reveals an ice-binding protein, a scarce set of secondary metabolites gene clusters and provides insights on Thelebolales phylogeny. Batista TM; Hilario HO; de Brito GAM; Moreira RG; Furtado C; de Menezes GCA; Rosa CA; Rosa LH; Franco GR Genomics; 2020 Sep; 112(5):2915-2921. PubMed ID: 32389811 [TBL] [Abstract][Full Text] [Related]
35. Genome-scale analyses and characteristics of putative pathogenicity genes of Stagonosporopsis cucurbitacearum, a pumpkin gummy stem blight fungus. Zhao Q; Wu J; Zhang L; Yan C; Jiang S; Li Z; Sun D; Lai Y; Gong Z Sci Rep; 2020 Oct; 10(1):18065. PubMed ID: 33093634 [TBL] [Abstract][Full Text] [Related]
36. Snow mold of winter cereals: a complex disease and a challenge for resistance breeding. Ponomareva ML; Gorshkov VY; Ponomarev SN; Korzun V; Miedaner T Theor Appl Genet; 2021 Feb; 134(2):419-433. PubMed ID: 33221940 [TBL] [Abstract][Full Text] [Related]
37. Proteomic study of low-temperature responses in strawberry cultivars (Fragaria x ananassa) that differ in cold tolerance. Koehler G; Wilson RC; Goodpaster JV; Sønsteby A; Lai X; Witzmann FA; You JS; Rohloff J; Randall SK; Alsheikh M Plant Physiol; 2012 Aug; 159(4):1787-805. PubMed ID: 22689892 [TBL] [Abstract][Full Text] [Related]
38. Analysis of the lineage of Phytophthora infestans isolates using mating type assay, traditional markers, and next generation sequencing technologies. Arafa RA; Kamel SM; Rakha MT; Soliman NEK; Moussa OM; Shirasawa K PLoS One; 2020; 15(1):e0221604. PubMed ID: 31961875 [TBL] [Abstract][Full Text] [Related]
39. Influence of simulated acid snow stress on leaf tissue of wintering herbaceous plants. Inada H; Nagao M; Fujikawa S; Arakawa K Plant Cell Physiol; 2006 Apr; 47(4):504-12. PubMed ID: 16481360 [TBL] [Abstract][Full Text] [Related]
40. Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Zhu B; Chen TH; Li PH Planta; 1996; 198(1):70-7. PubMed ID: 8580772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]