BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37815757)

  • 1. Workflow disruptions in robot-assisted surgery.
    Wong SW; Crowe P
    J Robot Surg; 2023 Dec; 17(6):2663-2669. PubMed ID: 37815757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting workflow in robot-assisted surgery: a scoping review.
    Poulsen JL; Bruun B; Oestergaard D; Spanager L
    Surg Endosc; 2022 Dec; 36(12):8713-8725. PubMed ID: 35739430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety, efficiency and learning curves in robotic surgery: a human factors analysis.
    Catchpole K; Perkins C; Bresee C; Solnik MJ; Sherman B; Fritch J; Gross B; Jagannathan S; Hakami-Majd N; Avenido R; Anger JT
    Surg Endosc; 2016 Sep; 30(9):3749-61. PubMed ID: 26675938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operating room team strategies to reduce flow disruptions in high-risk task episodes: resilience in robot-assisted surgery.
    Koch A; Schlenker B; Becker A; Weigl M
    Ergonomics; 2023 Aug; 66(8):1118-1131. PubMed ID: 36285451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Associations of Intraoperative Flow Disruptions and Operating Room Teamwork During Robotic-assisted Radical Prostatectomy.
    Weigl M; Weber J; Hallett E; Pfandler M; Schlenker B; Becker A; Catchpole K
    Urology; 2018 Apr; 114():105-113. PubMed ID: 29371162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Barriers to safety and efficiency in robotic surgery docking.
    Cofran L; Cohen T; Alfred M; Kanji F; Choi E; Savage S; Anger J; Catchpole K
    Surg Endosc; 2022 Jan; 36(1):206-215. PubMed ID: 33469695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Work-system interventions in robotic-assisted surgery: a systematic review exploring the gap between challenges and solutions.
    Kanji F; Catchpole K; Choi E; Alfred M; Cohen K; Shouhed D; Anger J; Cohen T
    Surg Endosc; 2021 May; 35(5):1976-1989. PubMed ID: 33398585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Workflow Disruptions in Robotic-Assisted Bariatric Surgery: Elucidating Challenges Experienced by Surgical Teams.
    Zamudio J; Kanji FF; Lusk C; Shouhed D; Sanchez BR; Catchpole K; Anger JT; Cohen TN
    Obes Surg; 2023 Jul; 33(7):2083-2089. PubMed ID: 37147465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human factors in robotic assisted surgery: Lessons from studies 'in the Wild'.
    Catchpole K; Bisantz A; Hallbeck MS; Weigl M; Randell R; Kossack M; Anger JT
    Appl Ergon; 2019 Jul; 78():270-276. PubMed ID: 29478667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barriers to efficiency in robotic surgery: the resident effect.
    Jain M; Fry BT; Hess LW; Anger JT; Gewertz BL; Catchpole K
    J Surg Res; 2016 Oct; 205(2):296-304. PubMed ID: 27664876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minor flow disruptions, traffic-related factors and their effect on major flow disruptions in the operating room.
    Joseph A; Khoshkenar A; Taaffe KM; Catchpole K; Machry H; Bayramzadeh S;
    BMJ Qual Saf; 2019 Apr; 28(4):276-283. PubMed ID: 30158119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical flow disruptions during robotic-assisted radical prostatectomy.
    Dru CJ; Anger JT; Souders CP; Bresee C; Weigl M; Hallett E; Catchpole K
    Can J Urol; 2017 Jun; 24(3):8814-8821. PubMed ID: 28646936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associations of flow disruptions with patient, staff, and process outcomes: a prospective observational study of robotic-assisted radical prostatectomies.
    Koch A; Quartucci C; Buchner A; Schlenker B; Becker A; Catchpole K; Weigl M
    Surg Endosc; 2023 Sep; 37(9):6964-6974. PubMed ID: 37336845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow disruptions in robotic-assisted abdominal sacrocolpopexy: does robotic surgery introduce unforeseen challenges for gynecologic surgeons?
    Souders CP; Catchpole K; Hannemann A; Lyon R; Eilber KS; Bresee C; Cohen T; Weigl M; Anger JT
    Int Urogynecol J; 2019 Dec; 30(12):2177-2182. PubMed ID: 31041500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Surgical Table Orientation on Flow Disruptions and Movement Patterns during Pediatric Outpatient Surgeries.
    Joseph A; Neyens D; Mihandoust S; Taaffe K; Allison D; Prabhu V; Reeves S
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraoperative dynamics of workflow disruptions and surgeons' technical performance failures: insights from a simulated operating room.
    Koch A; Kullmann A; Stefan P; Weinmann T; Baumbach SF; Lazarovici M; Weigl M
    Surg Endosc; 2022 Jun; 36(6):4452-4461. PubMed ID: 34724585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surgical Flow Disruptions, a Pilot Survey with Significant Clinical Outcome Implications.
    Silver D; Kaye AD; Slakey D
    Curr Pain Headache Rep; 2020 Aug; 24(10):60. PubMed ID: 32812167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room Size Influences Flow in Robotic-Assisted Surgery.
    Kanji F; Cohen T; Alfred M; Caron A; Lawton S; Savage S; Shouhed D; Anger JT; Catchpole K
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Robotic-Assisted Surgery on Team Performance: A Systematic Mixed Studies Review.
    Gillespie BM; Gillespie J; Boorman RJ; Granqvist K; Stranne J; Erichsen-Andersson A
    Hum Factors; 2021 Dec; 63(8):1352-1379. PubMed ID: 32613863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Flow Disruptions on Mental Workload and Surgical Performance in Robotic-Assisted Surgery.
    Weber J; Catchpole K; Becker AJ; Schlenker B; Weigl M
    World J Surg; 2018 Nov; 42(11):3599-3607. PubMed ID: 29845381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.