These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37815851)

  • 1. Thiol-Disulfide Exchange Kinetics and Redox Potential of the Coenzyme M and Coenzyme B Heterodisulfide, an Electron Acceptor Coupled to Energy Conservation in Methanogenic Archaea.
    Laird MG; Adlung N; Koivisto JJ; Scheller S
    Chembiochem; 2024 Jan; 25(1):e202300595. PubMed ID: 37815851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium.
    Bobik TA; Wolfe RS
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.
    Kaster AK; Moll J; Parey K; Thauer RK
    Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2981-6. PubMed ID: 21262829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2.
    Thauer RK
    Curr Opin Microbiol; 2011 Jun; 14(3):292-9. PubMed ID: 21489863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium.
    Bobik TA; Olson KD; Noll KM; Wolfe RS
    Biochem Biophys Res Commun; 1987 Dec; 149(2):455-60. PubMed ID: 3122735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics.
    Graham DE; White RH
    Nat Prod Rep; 2002 Apr; 19(2):133-47. PubMed ID: 12013276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.
    Yan Z; Wang M; Ferry JG
    mBio; 2017 Feb; 8(1):. PubMed ID: 28174314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy conservation in the gut microbe Methanomassiliicoccus luminyensis is based on membrane-bound ferredoxin oxidation coupled to heterodisulfide reduction.
    Kröninger L; Steiniger F; Berger S; Kraus S; Welte CU; Deppenmeier U
    FEBS J; 2019 Oct; 286(19):3831-3843. PubMed ID: 31162794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis of Hydrogenotrophic Methanogenesis.
    Shima S; Huang G; Wagner T; Ermler U
    Annu Rev Microbiol; 2020 Sep; 74():713-733. PubMed ID: 32692612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemistry of methanogenesis.
    Ferry JG
    Crit Rev Biochem Mol Biol; 1992; 27(6):473-503. PubMed ID: 1473352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reduced F
    Heryakusuma C; Susanti D; Yu H; Li Z; Purwantini E; Hettich RL; Orphan VJ; Mukhopadhyay B
    J Bacteriol; 2022 Jul; 204(7):e0007822. PubMed ID: 35695516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue.
    Dey M; Li X; Kunz RC; Ragsdale SW
    Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of methyl coenzyme M reduction with carbon dioxide activation in extracts of Methanobacterium thermoautotrophicum.
    Romesser JA; Wolfe RS
    J Bacteriol; 1982 Nov; 152(2):840-7. PubMed ID: 6813316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unusual thiol-driven fumarate reductase in Methanobacterium with the production of the heterodisulfide of coenzyme M and N-(7-mercaptoheptanoyl)threonine-O3-phosphate.
    Bobik TA; Wolfe RS
    J Biol Chem; 1989 Nov; 264(31):18714-8. PubMed ID: 2509466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways.
    Wang FP; Zhang Y; Chen Y; He Y; Qi J; Hinrichs KU; Zhang XX; Xiao X; Boon N
    ISME J; 2014 May; 8(5):1069-78. PubMed ID: 24335827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pathway for coenzyme M biosynthesis in bacteria.
    Wu HH; Pun MD; Wise CE; Streit BR; Mus F; Berim A; Kincannon WM; Islam A; Partovi SE; Gang DR; DuBois JL; Lubner CE; Berkman CE; Lange BM; Peters JW
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2207190119. PubMed ID: 36037354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria.
    Deppenmeier U; Blaut M; Mahlmann A; Gottschalk G
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9449-53. PubMed ID: 11607121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-driven proton translocation in methanogenic Archaea.
    Deppenmeier U
    Cell Mol Life Sci; 2002 Sep; 59(9):1513-33. PubMed ID: 12440773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymology of one-carbon metabolism in methanogenic pathways.
    Ferry JG
    FEMS Microbiol Rev; 1999 Jan; 23(1):13-38. PubMed ID: 10077852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.