These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37815955)

  • 1. Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators.
    Stutz D; Chandramoorthy N; Hein M; Schiele B
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3632-3647. PubMed ID: 37815955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training high-performance and large-scale deep neural networks with full 8-bit integers.
    Yang Y; Deng L; Wu S; Yan T; Xie Y; Li G
    Neural Netw; 2020 May; 125():70-82. PubMed ID: 32070857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-BFA: Targeted Bit-Flip Adversarial Weight Attack.
    Rakin AS; He Z; Li J; Yao F; Chakrabarti C; Fan D
    IEEE Trans Pattern Anal Mach Intell; 2021 Sep; PP():. PubMed ID: 34529561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Retraining-Based Mixed-Precision Quantization for Low-Cost DNN Accelerator Design.
    Kim N; Shin D; Choi W; Kim G; Park J
    IEEE Trans Neural Netw Learn Syst; 2021 Jul; 32(7):2925-2938. PubMed ID: 32745007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Complexity Gradient Computation Techniques to Accelerate Deep Neural Network Training.
    Shin D; Kim G; Jo J; Park J
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5745-5759. PubMed ID: 34890336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Precision Floating-Point (HPFP) Selection to Optimize Hardware-Constrained Accelerator for CNN Training.
    Junaid M; Aliev H; Park S; Kim H; Yoo H; Sim S
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IVS-Caffe-Hardware-Oriented Neural Network Model Development.
    Tsai CC; Guo JI
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5978-5992. PubMed ID: 34310321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Efficient Bit-Level Sparsity-Tolerant Memristive Networks.
    Lyu B; Wen S; Yang Y; Chang X; Sun J; Chen Y; Huang T
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11979-11988. PubMed ID: 37030854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Hardware Accelerators for Optimized and Quantized Neural Networks to Detect Atrial Fibrillation in Patch ECG Device with RISC-V.
    Hoyer I; Utz A; Lüdecke A; Kappert H; Rohr M; Antink CH; Seidl K
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised Network Quantization via Fixed-Point Factorization.
    Wang P; He X; Chen Q; Cheng A; Liu Q; Cheng J
    IEEE Trans Neural Netw Learn Syst; 2021 Jun; 32(6):2706-2720. PubMed ID: 32706647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Low-Bit Quantization Strategy for Compressing Deep Neural Networks.
    Long X; Zeng X; Ben Z; Zhou D; Zhang M
    Comput Intell Neurosci; 2020; 2020():7839064. PubMed ID: 32148472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SmartDeal: Remodeling Deep Network Weights for Efficient Inference and Training.
    Chen X; Zhao Y; Wang Y; Xu P; You H; Li C; Fu Y; Lin Y; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7099-7113. PubMed ID: 35235521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples.
    Tuna OF; Catak FO; Eskil MT
    Multimed Tools Appl; 2022; 81(8):11479-11500. PubMed ID: 35221776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A regularization method to improve adversarial robustness of neural networks for ECG signal classification.
    Ma L; Liang L
    Comput Biol Med; 2022 May; 144():105345. PubMed ID: 35240379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Algorithm to Hardware: A Survey on Efficient and Safe Deployment of Deep Neural Networks.
    Geng X; Wang Z; Chen C; Xu Q; Xu K; Jin C; Gupta M; Yang X; Chen Z; Aly MMS; Lin J; Wu M; Li X
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; PP():. PubMed ID: 38875092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adversarial Attack and Defense in Deep Ranking.
    Zhou M; Wang L; Niu Z; Zhang Q; Zheng N; Hua G
    IEEE Trans Pattern Anal Mach Intell; 2024 Aug; 46(8):5306-5324. PubMed ID: 38349823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SalvageDNN: salvaging deep neural network accelerators with permanent faults through saliency-driven fault-aware mapping.
    Abdullah Hanif M; Shafique M
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190164. PubMed ID: 31865875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet.
    Chen S; He Z; Sun C; Yang J; Huang X
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):2188-2197. PubMed ID: 33095710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LRMP: Layer Replication with Mixed Precision for spatial in-memory DNN accelerators.
    Nallathambi A; Bose CD; Haensch W; Raghunathan A
    Front Artif Intell; 2024; 7():1268317. PubMed ID: 39430617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Low-Power DNN Accelerator Enabled by a Novel Staircase RRAM Array.
    Veluri H; Chand U; Li Y; Tang B; Thean AV
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4416-4427. PubMed ID: 34669580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.