These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37815965)

  • 21. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.
    Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP
    AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural Language Processing for Imaging Protocol Assignment: Machine Learning for Multiclass Classification of Abdominal CT Protocols Using Indication Text Data.
    Xavier BA; Chen PH
    J Digit Imaging; 2022 Oct; 35(5):1120-1130. PubMed ID: 35654878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transformer versus traditional natural language processing: how much data is enough for automated radiology report classification?
    Yang E; Li MD; Raghavan S; Deng F; Lang M; Succi MD; Huang AJ; Kalpathy-Cramer J
    Br J Radiol; 2023 Sep; 96(1149):20220769. PubMed ID: 37162253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data.
    Qeli E; Omasits U; Goetze S; Stekhoven DJ; Frey JE; Basler K; Wollscheid B; Brunner E; Ahrens CH
    J Proteomics; 2014 Aug; 108():269-83. PubMed ID: 24878426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MHCRoBERTa: pan-specific peptide-MHC class I binding prediction through transfer learning with label-agnostic protein sequences.
    Wang F; Wang H; Wang L; Lu H; Qiu S; Zang T; Zhang X; Hu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural language processing and machine learning approaches for food categorization and nutrition quality prediction compared with traditional methods.
    Hu G; Ahmed M; L'Abbé MR
    Am J Clin Nutr; 2023 Mar; 117(3):553-563. PubMed ID: 36872019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trie-based rule processing for clinical NLP: A use-case study of n-trie, making the ConText algorithm more efficient and scalable.
    Shi J; Hurdle JF
    J Biomed Inform; 2018 Sep; 85():106-113. PubMed ID: 30092358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of tree-based machine learning methods to screen affinitive peptides based on docking data.
    Feng H; Wang F; Li N; Xu Q; Zheng G; Sun X; Hu M; Li X; Xing G; Zhang G
    Mol Inform; 2023 Dec; 42(12):e202300143. PubMed ID: 37696773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Annotated dataset creation through large language models for non-english medical NLP.
    Frei J; Kramer F
    J Biomed Inform; 2023 Sep; 145():104478. PubMed ID: 37625508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Patients With Metastatic Prostate Cancer With Natural Language Processing and Machine Learning.
    Yang R; Zhu D; Howard LE; De Hoedt A; Williams SB; Freedland SJ; Klaassen Z
    JCO Clin Cancer Inform; 2022 Oct; 6():e2100071. PubMed ID: 36215673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. srBERT: automatic article classification model for systematic review using BERT.
    Aum S; Choe S
    Syst Rev; 2021 Oct; 10(1):285. PubMed ID: 34717768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural Language Processing.
    Sivarajkumar S; Wang Y
    AMIA Annu Symp Proc; 2022; 2022():972-981. PubMed ID: 37128372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differentiation of lumbar disc herniation and lumbar spinal stenosis using natural language processing-based machine learning based on positive symptoms.
    Ren G; Yu K; Xie Z; Liu L; Wang P; Zhang W; Wang Y; Wu X
    Neurosurg Focus; 2022 Apr; 52(4):E7. PubMed ID: 35364584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.