These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37816130)

  • 1. A novel, end-to-end framework for avoiding collisions between the patient's body and gantry in proton therapy.
    Yamazaki Y; Terunuma T; Kato T; Komori S; Sakae T
    Med Phys; 2023 Nov; 50(11):6684-6692. PubMed ID: 37816130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a 3D patient-specific collision avoidance virtual framework for half-gantry proton therapy system.
    Dougherty JM; Whitaker TJ; Mundy DW; Tryggestad EJ; Beltran CJ
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13496. PubMed ID: 34890094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A clinically feasible method for the detection of potential collision in proton therapy.
    Zou W; Lin H; Plastaras JP; Wang H; Bui V; Vapiwala N; McDonough J; Tochner Z; Both S
    Med Phys; 2012 Nov; 39(11):7094-101. PubMed ID: 23127100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collision prediction software for radiotherapy treatments.
    Padilla L; Pearson EA; Pelizzari CA
    Med Phys; 2015 Nov; 42(11):6448-56. PubMed ID: 26520734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging.
    Wang X; Ma C; Davis R; Parikh RR; Jabbour SK; Haffty BG; Yue NJ; Nie K; Zhang Y
    Radiat Oncol; 2019 Dec; 14(1):224. PubMed ID: 31829246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative framework for patient-specific collision detection in proton therapy.
    Northway SK; Vallejo BM; Liu L; Hansen EE; Tang S; Mah D; MacEwan IJ; Urbanic JJ; Chang C
    J Appl Clin Med Phys; 2024 Apr; 25(4):e14247. PubMed ID: 38131514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A virtual simulator designed for collision prevention in proton therapy.
    Jung H; Kum O; Han Y; Park HC; Kim JS; Choi DH
    Med Phys; 2015 Oct; 42(10):6021-7. PubMed ID: 26429277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and clinical implementation of eclipse scripting-based automated patient-specific collision avoidance software.
    Mann TD; Ploquin NP; Gill WR; Thind KS
    J Appl Clin Med Phys; 2019 Sep; 20(9):12-19. PubMed ID: 31282083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery.
    Yu VY; Tran A; Nguyen D; Cao M; Ruan D; Low DA; Sheng K
    Med Phys; 2015 Nov; 42(11):6457-67. PubMed ID: 26520735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical method for predicting patient-specific collision in radiotherapy.
    Miao J; Niu C; Liu Z; Tian Y; Dai J
    J Appl Clin Med Phys; 2020 Aug; 21(8):65-72. PubMed ID: 32462733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collision avoidance in computer optimized treatment planning.
    Humm JL
    Med Phys; 1994 Jul; 21(7):1053-64. PubMed ID: 7968836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of low-dose proton CT image registration for pretreatment alignment verification in reference to planning proton CT.
    Cassetta R; Piersimoni P; Riboldi M; Giacometti V; Bashkirov V; Baroni G; Ordonez C; Coutrakon G; Schulte R
    J Appl Clin Med Phys; 2019 Apr; 20(4):83-90. PubMed ID: 30933433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific collision zones for 4π trajectory optimized radiation therapy.
    Northway C; Lincoln JD; Little B; Syme A; Thomas CG
    Med Phys; 2022 Mar; 49(3):1407-1416. PubMed ID: 35023581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic cranial MRI from 3D optical surface scans using deep learning for radiation therapy treatment planning.
    Douglass M; Gorayski P; Patel S; Santos A
    Phys Eng Sci Med; 2023 Mar; 46(1):367-375. PubMed ID: 36752996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a handheld stereo depth camera to overcome limited field-of-view in simulation imaging for radiation therapy treatment planning.
    Jenkins C; Xing L; Yu A
    Med Phys; 2017 May; 44(5):1857-1864. PubMed ID: 28295413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collision prediction for intracranial stereotactic radiosurgery planning: An easy-to-implement analytical solution.
    Felefly T; Achkar S; Khater N; Sayah R; Fares G; Farah N; El Barouky J; Azoury F; El Khoury C; Roukoz C; Nehme Nasr D; Nasr E
    Cancer Radiother; 2020 Jul; 24(4):316-322. PubMed ID: 32467083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collision Risk Mitigation of Varian TrueBeam Linear Accelerator With Supplemental Live-View Cameras.
    Nguyen SM; Chlebik AA; Olch AJ; Wong KK
    Pract Radiat Oncol; 2019 Jan; 9(1):e103-e109. PubMed ID: 30017785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method.
    Liu Y; Lei Y; Wang Y; Wang T; Ren L; Lin L; McDonald M; Curran WJ; Liu T; Zhou J; Yang X
    Phys Med Biol; 2019 Jul; 64(14):145015. PubMed ID: 31146267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors.
    Berbeco RI; Jiang SB; Sharp GC; Chen GT; Mostafavi H; Shirato H
    Phys Med Biol; 2004 Jan; 49(2):243-55. PubMed ID: 15083669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic dual-energy CT for MRI-only based proton therapy treatment planning using label-GAN.
    Liu R; Lei Y; Wang T; Zhou J; Roper J; Lin L; McDonald MW; Bradley JD; Curran WJ; Liu T; Yang X
    Phys Med Biol; 2021 Mar; 66(6):065014. PubMed ID: 33596558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.