BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37816130)

  • 1. A novel, end-to-end framework for avoiding collisions between the patient's body and gantry in proton therapy.
    Yamazaki Y; Terunuma T; Kato T; Komori S; Sakae T
    Med Phys; 2023 Nov; 50(11):6684-6692. PubMed ID: 37816130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a 3D patient-specific collision avoidance virtual framework for half-gantry proton therapy system.
    Dougherty JM; Whitaker TJ; Mundy DW; Tryggestad EJ; Beltran CJ
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13496. PubMed ID: 34890094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A clinically feasible method for the detection of potential collision in proton therapy.
    Zou W; Lin H; Plastaras JP; Wang H; Bui V; Vapiwala N; McDonough J; Tochner Z; Both S
    Med Phys; 2012 Nov; 39(11):7094-101. PubMed ID: 23127100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collision prediction software for radiotherapy treatments.
    Padilla L; Pearson EA; Pelizzari CA
    Med Phys; 2015 Nov; 42(11):6448-56. PubMed ID: 26520734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging.
    Wang X; Ma C; Davis R; Parikh RR; Jabbour SK; Haffty BG; Yue NJ; Nie K; Zhang Y
    Radiat Oncol; 2019 Dec; 14(1):224. PubMed ID: 31829246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative framework for patient-specific collision detection in proton therapy.
    Northway SK; Vallejo BM; Liu L; Hansen EE; Tang S; Mah D; MacEwan IJ; Urbanic JJ; Chang C
    J Appl Clin Med Phys; 2024 Apr; 25(4):e14247. PubMed ID: 38131514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A virtual simulator designed for collision prevention in proton therapy.
    Jung H; Kum O; Han Y; Park HC; Kim JS; Choi DH
    Med Phys; 2015 Oct; 42(10):6021-7. PubMed ID: 26429277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and clinical implementation of eclipse scripting-based automated patient-specific collision avoidance software.
    Mann TD; Ploquin NP; Gill WR; Thind KS
    J Appl Clin Med Phys; 2019 Sep; 20(9):12-19. PubMed ID: 31282083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery.
    Yu VY; Tran A; Nguyen D; Cao M; Ruan D; Low DA; Sheng K
    Med Phys; 2015 Nov; 42(11):6457-67. PubMed ID: 26520735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical method for predicting patient-specific collision in radiotherapy.
    Miao J; Niu C; Liu Z; Tian Y; Dai J
    J Appl Clin Med Phys; 2020 Aug; 21(8):65-72. PubMed ID: 32462733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collision avoidance in computer optimized treatment planning.
    Humm JL
    Med Phys; 1994 Jul; 21(7):1053-64. PubMed ID: 7968836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of low-dose proton CT image registration for pretreatment alignment verification in reference to planning proton CT.
    Cassetta R; Piersimoni P; Riboldi M; Giacometti V; Bashkirov V; Baroni G; Ordonez C; Coutrakon G; Schulte R
    J Appl Clin Med Phys; 2019 Apr; 20(4):83-90. PubMed ID: 30933433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific collision zones for 4π trajectory optimized radiation therapy.
    Northway C; Lincoln JD; Little B; Syme A; Thomas CG
    Med Phys; 2022 Mar; 49(3):1407-1416. PubMed ID: 35023581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic cranial MRI from 3D optical surface scans using deep learning for radiation therapy treatment planning.
    Douglass M; Gorayski P; Patel S; Santos A
    Phys Eng Sci Med; 2023 Mar; 46(1):367-375. PubMed ID: 36752996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a handheld stereo depth camera to overcome limited field-of-view in simulation imaging for radiation therapy treatment planning.
    Jenkins C; Xing L; Yu A
    Med Phys; 2017 May; 44(5):1857-1864. PubMed ID: 28295413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collision prediction for intracranial stereotactic radiosurgery planning: An easy-to-implement analytical solution.
    Felefly T; Achkar S; Khater N; Sayah R; Fares G; Farah N; El Barouky J; Azoury F; El Khoury C; Roukoz C; Nehme Nasr D; Nasr E
    Cancer Radiother; 2020 Jul; 24(4):316-322. PubMed ID: 32467083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collision Risk Mitigation of Varian TrueBeam Linear Accelerator With Supplemental Live-View Cameras.
    Nguyen SM; Chlebik AA; Olch AJ; Wong KK
    Pract Radiat Oncol; 2019 Jan; 9(1):e103-e109. PubMed ID: 30017785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method.
    Liu Y; Lei Y; Wang Y; Wang T; Ren L; Lin L; McDonald M; Curran WJ; Liu T; Zhou J; Yang X
    Phys Med Biol; 2019 Jul; 64(14):145015. PubMed ID: 31146267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors.
    Berbeco RI; Jiang SB; Sharp GC; Chen GT; Mostafavi H; Shirato H
    Phys Med Biol; 2004 Jan; 49(2):243-55. PubMed ID: 15083669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic dual-energy CT for MRI-only based proton therapy treatment planning using label-GAN.
    Liu R; Lei Y; Wang T; Zhou J; Roper J; Lin L; McDonald MW; Bradley JD; Curran WJ; Liu T; Yang X
    Phys Med Biol; 2021 Mar; 66(6):065014. PubMed ID: 33596558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.