These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37816131)

  • 1. A deep supervised transformer U-shaped full-resolution residual network for the segmentation of breast ultrasound image.
    Zhou J; Hou Z; Lu H; Wang W; Zhao W; Wang Z; Zheng D; Wang S; Tang W; Qu X
    Med Phys; 2023 Dec; 50(12):7513-7524. PubMed ID: 37816131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An attention-supervised full-resolution residual network for the segmentation of breast ultrasound images.
    Qu X; Shi Y; Hou Y; Jiang J
    Med Phys; 2020 Nov; 47(11):5702-5714. PubMed ID: 32964449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.
    Qu X; Lu H; Tang W; Wang S; Zheng D; Hou Y; Jiang J
    Med Phys; 2022 Sep; 49(9):5787-5798. PubMed ID: 35866492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network.
    Wang K; Liang S; Zhong S; Feng Q; Ning Z; Zhang Y
    Med Phys; 2021 Aug; 48(8):4262-4278. PubMed ID: 34053092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BUS-Set: A benchmark for quantitative evaluation of breast ultrasound segmentation networks with public datasets.
    Thomas C; Byra M; Marti R; Yap MH; Zwiggelaar R
    Med Phys; 2023 May; 50(5):3223-3243. PubMed ID: 36794706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic tumor segmentation of breast ultrasound images with deep learning.
    Zhang S; Liao M; Wang J; Zhu Y; Zhang Y; Zhang J; Zheng R; Lv L; Zhu D; Chen H; Wang W
    J Appl Clin Med Phys; 2023 Jan; 24(1):e13863. PubMed ID: 36495018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2S-BUSGAN: A Novel Generative Adversarial Network for Realistic Breast Ultrasound Image with Corresponding Tumor Contour Based on Small Datasets.
    Luo J; Zhang H; Zhuang Y; Han L; Chen K; Hua Z; Li C; Lin J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model.
    Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C
    Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TransU²-Net: An Effective Medical Image Segmentation Framework Based on Transformer and U²-Net.
    Li X; Fang X; Yang G; Su S; Zhu L; Yu Z
    IEEE J Transl Eng Health Med; 2023; 11():441-450. PubMed ID: 37817826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Edge-Based Selection Method for Improving Regions-of-Interest Localizations Obtained Using Multiple Deep Learning Object-Detection Models in Breast Ultrasound Images.
    Daoud MI; Al-Ali A; Alazrai R; Al-Najar MS; Alsaify BA; Ali MZ; Alouneh S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MultiIB-TransUNet: Transformer with multiple information bottleneck blocks for CT and ultrasound image segmentation.
    Li G; Jin D; Yu Q; Zheng Y; Qi M
    Med Phys; 2024 Feb; 51(2):1178-1189. PubMed ID: 37528654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate segmentation of breast tumor in ultrasound images through joint training and refined segmentation.
    Shen X; Wu X; Liu R; Li H; Yin J; Wang L; Ma H
    Phys Med Biol; 2022 Sep; 67(17):. PubMed ID: 35961304
    [No Abstract]   [Full Text] [Related]  

  • 14. BUS-Net: Breast Tumour Detection Network for Ultrasound Images Using Bi-directional ConvLSTM and Dense Residual Connections.
    Arora R; Raman B
    J Digit Imaging; 2023 Apr; 36(2):627-646. PubMed ID: 36515746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lesion segmentation in breast ultrasound images using the optimized marked watershed method.
    Shen X; Ma H; Liu R; Li H; He J; Wu X
    Biomed Eng Online; 2021 Jun; 20(1):57. PubMed ID: 34098970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dilated transformer: residual axial attention for breast ultrasound image segmentation.
    Shen X; Wang L; Zhao Y; Liu R; Qian W; Ma H
    Quant Imaging Med Surg; 2022 Sep; 12(9):4512-4528. PubMed ID: 36060605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Analysis of Current Deep Learning Networks for Breast Lesion Segmentation in Ultrasound Images.
    Ferreira MR; Torres HR; Oliveira B; Gomes-Fonseca J; Morais P; Novais P; Vilaca JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3878-3881. PubMed ID: 36085645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep weakly-supervised breast tumor segmentation in ultrasound images with explicit anatomical constraints.
    Li Y; Liu Y; Huang L; Wang Z; Luo J
    Med Image Anal; 2022 Feb; 76():102315. PubMed ID: 34902792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cGAN-based tumor segmentation method for breast ultrasound images.
    You G; Qin Y; Zhao C; Zhao Y; Zhu K; Yang X; Li YL
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37276866
    [No Abstract]   [Full Text] [Related]  

  • 20. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.