These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37816141)

  • 1. A Lightweight Framework For Chromatin Loop Detection at the Single-Cell Level.
    Wang F; Alinejad-Rokny H; Lin J; Gao T; Chen X; Zheng Z; Meng L; Li X; Wong KC
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303502. PubMed ID: 37816141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale and integrative single-cell Hi-C analysis with Higashi.
    Zhang R; Zhou T; Ma J
    Nat Biotechnol; 2022 Feb; 40(2):254-261. PubMed ID: 34635838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scGHOST: identifying single-cell 3D genome subcompartments.
    Xiong K; Zhang R; Ma J
    Nat Methods; 2024 May; 21(5):814-822. PubMed ID: 38589516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data.
    Shi Z; Wu H
    Comput Biol Med; 2024 May; 173():108336. PubMed ID: 38513390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scGHOST: Identifying single-cell 3D genome subcompartments.
    Xiong K; Zhang R; Ma J
    bioRxiv; 2023 May; ():. PubMed ID: 37292994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MMCT-Loop: a mix model-based pipeline for calling targeted 3D chromatin loops.
    Tang L; Liao J; Hill MC; Hu J; Zhao Y; Ellinor PT; Li M
    Nucleic Acids Res; 2024 Mar; 52(5):e25. PubMed ID: 38281134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GILoop: Robust chromatin loop calling across multiple sequencing depths on Hi-C data.
    Wang F; Gao T; Lin J; Zheng Z; Huang L; Toseef M; Li X; Wong KC
    iScience; 2022 Dec; 25(12):105535. PubMed ID: 36444296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGrapHiC: deep learning-based graph deconvolution for Hi-C using single cell gene expression.
    Murtaza G; Butaney B; Wagner J; Singh R
    Bioinformatics; 2024 Jun; 40(Supplement_1):i490-i500. PubMed ID: 38940151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi.
    Zhang R; Zhou T; Ma J
    Cell Syst; 2022 Oct; 13(10):798-807.e6. PubMed ID: 36265466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep generative modeling and clustering of single cell Hi-C data.
    Liu Q; Zeng W; Zhang W; Wang S; Chen H; Jiang R; Zhou M; Zhang S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering.
    Zheng J; Yang Y; Dai Z
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38040494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
    Yu M; Abnousi A; Zhang Y; Li G; Lee L; Chen Z; Fang R; Lagler TM; Yang Y; Wen J; Sun Q; Li Y; Ren B; Hu M
    Nat Methods; 2021 Sep; 18(9):1056-1059. PubMed ID: 34446921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD-Loop: a chromatin loop detection method based on the diffusion model.
    Shen J; Wang Y; Luo J
    Front Genet; 2024; 15():1393406. PubMed ID: 38770419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes.
    Wang S; Zhang Q; He Y; Cui Z; Guo Z; Han K; Huang DS
    PLoS Comput Biol; 2022 Oct; 18(10):e1010572. PubMed ID: 36206320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scGAD: single-cell gene associating domain scores for exploratory analysis of scHi-C data.
    Shen S; Zheng Y; Keleş S
    Bioinformatics; 2022 Jul; 38(14):3642-3644. PubMed ID: 35652733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate loop calling for 3D genomic data with cLoops.
    Cao Y; Chen Z; Chen X; Ai D; Chen G; McDermott J; Huang Y; Guo X; Han JJ
    Bioinformatics; 2020 Feb; 36(3):666-675. PubMed ID: 31504161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SnapHiC2: A computationally efficient loop caller for single cell Hi-C data.
    Li X; Lee L; Abnousi A; Yu M; Liu W; Huang L; Li Y; Hu M
    Comput Struct Biotechnol J; 2022; 20():2778-2783. PubMed ID: 35685374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scHi-CSim: a flexible simulator that generates high-fidelity single-cell Hi-C data for benchmarking.
    Fan S; Dang D; Ye Y; Zhang SW; Gao L; Zhang S
    J Mol Cell Biol; 2023 Jun; 15(1):. PubMed ID: 36708167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation.
    Roayaei Ardakany A; Gezer HT; Lonardi S; Ay F
    Genome Biol; 2020 Sep; 21(1):256. PubMed ID: 32998764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.