BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 37816350)

  • 1. An N terminomics toolbox combining 2-pyridinecarboxaldehyde probes and click chemistry for profiling protease specificity.
    Bridge HN; Leiter W; Frazier CL; Weeks AM
    Cell Chem Biol; 2024 Mar; 31(3):534-549.e8. PubMed ID: 37816350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-Derived Peptide Libraries for Deep Specificity Profiling of N-terminal Modification Reagents.
    Bridge HN; Weeks AM
    Curr Protoc; 2023 Jun; 3(6):e798. PubMed ID: 37283519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Terminomics Strategies for Protease Substrates Profiling.
    Mintoo M; Chakravarty A; Tilvawala R
    Molecules; 2021 Aug; 26(15):. PubMed ID: 34361849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protease Specificity: Towards In Vivo Imaging Applications and Biomarker Discovery.
    Vizovišek M; Vidmar R; Drag M; Fonović M; Salvesen GS; Turk B
    Trends Biochem Sci; 2018 Oct; 43(10):829-844. PubMed ID: 30097385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Chemical Strategy for Protease Substrate Profiling.
    Griswold AR; Cifani P; Rao SD; Axelrod AJ; Miele MM; Hendrickson RC; Kentsis A; Bachovchin DA
    Cell Chem Biol; 2019 Jun; 26(6):901-907.e6. PubMed ID: 31006619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Peptide-Based Click Chemistry for Proteomic Profiling of Nascent Proteins.
    Sun N; Wang Y; Wang J; Sun W; Yang J; Liu N
    Anal Chem; 2020 Jun; 92(12):8292-8297. PubMed ID: 32434323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease Substrate Identification Using N-terminomics.
    Luo SY; Araya LE; Julien O
    ACS Chem Biol; 2019 Nov; 14(11):2361-2371. PubMed ID: 31368682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No Substrate Left behind-Mining of Shotgun Proteomics Datasets Rescues Evidence of Proteolysis by SARS-CoV-2 3CL
    Bell PA; Overall CM
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Terminomics/TAILS of Human Tumor Biopsies and Cancer Cell Lines.
    Derakhshani A; Bulluss M; Penner R; Dufour A
    Methods Mol Biol; 2024; 2747():19-28. PubMed ID: 38038928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu-Catalyzed Azide-Alkyne-Thiol Reaction Forms Ubiquitous Background in Chemical Proteomic Studies.
    Wiest A; Kielkowski P
    J Am Chem Soc; 2024 Jan; 146(3):2151-2159. PubMed ID: 38214237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing In-Depth N-Terminomics Detection with a Cleavable 2-Pyridinecarboxyaldehyde Probe.
    Song X; Ren X; Mei Q; Liu H; Huang H
    J Am Chem Soc; 2024 Mar; 146(10):6487-6492. PubMed ID: 38421262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping Cell Surface Proteolysis with Plasma Membrane-Targeted Subtiligase.
    Amiridis AA; Weeks AM
    Methods Mol Biol; 2022; 2456():71-83. PubMed ID: 35612736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-terminomics: a high-content screen for protease substrates and their cleavage sites.
    Timmer JC; Salvesen GS
    Methods Mol Biol; 2011; 753():243-55. PubMed ID: 21604127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Terminomics/TAILS Profiling of Proteases and Their Substrates in Ulcerative Colitis.
    Gordon MH; Anowai A; Young D; Das N; Campden RI; Sekhon H; Myers Z; Mainoli B; Chopra S; Thuy-Boun PS; Kizhakkedathu J; Bindra G; Jijon HB; Heitman S; Yates R; Wolan DW; Edgington-Mitchell LE; MacNaughton WK; Dufour A
    ACS Chem Biol; 2019 Nov; 14(11):2471-2483. PubMed ID: 31393699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective C-Terminal Conjugation of Protease-Derived Native Peptides for Proteomic Measurements.
    Xie T; Brady A; Velarde C; Vaccarello DN; Callahan NW; Marino JP; Orski SV
    Langmuir; 2022 Aug; 38(30):9119-9128. PubMed ID: 35856835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current trends and challenges in proteomic identification of protease substrates.
    Vizovišek M; Vidmar R; Fonović M; Turk B
    Biochimie; 2016 Mar; 122():77-87. PubMed ID: 26514758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.