These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37816550)

  • 21. Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data.
    Gao Y; Li W
    Methods Enzymol; 2021; 655():225-243. PubMed ID: 34183123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis.
    Zhang R; Kuo R; Coulter M; Calixto CPG; Entizne JC; Guo W; Marquez Y; Milne L; Riegler S; Matsui A; Tanaka M; Harvey S; Gao Y; Wießner-Kroh T; Paniagua A; Crespi M; Denby K; Hur AB; Huq E; Jantsch M; Jarmolowski A; Koester T; Laubinger S; Li QQ; Gu L; Seki M; Staiger D; Sunkar R; Szweykowska-Kulinska Z; Tu SL; Wachter A; Waugh R; Xiong L; Zhang XN; Conesa A; Reddy ASN; Barta A; Kalyna M; Brown JWS
    Genome Biol; 2022 Jul; 23(1):149. PubMed ID: 35799267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data.
    Di Bella S; La Ferlita A; Carapezza G; Alaimo S; Isacchi A; Ferro A; Pulvirenti A; Bosotti R
    Brief Bioinform; 2020 Dec; 21(6):1987-1998. PubMed ID: 31740918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SCAPTURE: a deep learning-embedded pipeline that captures polyadenylation information from 3' tag-based RNA-seq of single cells.
    Li GW; Nan F; Yuan GH; Liu CX; Liu X; Chen LL; Tian B; Yang L
    Genome Biol; 2021 Aug; 22(1):221. PubMed ID: 34376223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines.
    Audoux J; Salson M; Grosset CF; Beaumeunier S; Holder JM; Commes T; Philippe N
    BMC Bioinformatics; 2017 Sep; 18(1):428. PubMed ID: 28969586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic benchmarking of statistical methods to assess differential expression of circular RNAs.
    Buratin A; Bortoluzzi S; Gaffo E
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. XBSeq2: a fast and accurate quantification of differential expression and differential polyadenylation.
    Liu Y; Wu P; Zhou J; Johnson-Pais TL; Lai Z; Chowdhury WH; Rodriguez R; Chen Y
    BMC Bioinformatics; 2017 Oct; 18(Suppl 11):384. PubMed ID: 28984183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PRAPI: post-transcriptional regulation analysis pipeline for Iso-Seq.
    Gao Y; Wang H; Zhang H; Wang Y; Chen J; Gu L
    Bioinformatics; 2018 May; 34(9):1580-1582. PubMed ID: 29280994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational pipeline to infer alternative poly-adenylation from 3' sequencing data.
    Yalamanchili HK; Elrod ND; Jensen MK; Ji P; Lin A; Wagner EJ; Liu Z
    Methods Enzymol; 2021; 655():185-204. PubMed ID: 34183121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. flexiMAP: a regression-based method for discovering differential alternative polyadenylation events in standard RNA-seq data.
    Szkop KJ; Moss DS; Nobeli I
    Bioinformatics; 2021 Jun; 37(10):1461-1464. PubMed ID: 33051680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate Quantification of Overlapping Herpesvirus Transcripts from RNA Sequencing Data.
    Casco A; Gupta A; Hayes M; Djavadian R; Ohashi M; Johannsen E
    J Virol; 2022 Jan; 96(2):e0163521. PubMed ID: 34705568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq.
    Shepard PJ; Choi EA; Lu J; Flanagan LA; Hertel KJ; Shi Y
    RNA; 2011 Apr; 17(4):761-72. PubMed ID: 21343387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. movAPA: modeling and visualization of dynamics of alternative polyadenylation across biological samples.
    Ye W; Liu T; Fu H; Ye C; Ji G; Wu X
    Bioinformatics; 2021 Aug; 37(16):2470-2472. PubMed ID: 33258917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RAP: A Web Tool for RNA-Seq Data Analysis.
    D'Antonio M; Libro P; Picardi E; Pesole G; Castrignanò T
    Methods Mol Biol; 2021; 2284():393-415. PubMed ID: 33835454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. scAPAdb: a comprehensive database of alternative polyadenylation at single-cell resolution.
    Zhu S; Lian Q; Ye W; Qin W; Wu Z; Ji G; Wu X
    Nucleic Acids Res; 2022 Jan; 50(D1):D365-D370. PubMed ID: 34508354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis.
    Xi NM; Li JJ
    STAR Protoc; 2021 Sep; 2(3):100699. PubMed ID: 34382023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. scMAPA: Identification of cell-type-specific alternative polyadenylation in complex tissues.
    Bai Y; Qin Y; Fan Z; Morrison RM; Nam K; Zarour HM; Koldamova R; Padiath QS; Kim S; Park HJ
    Gigascience; 2022 Apr; 11():. PubMed ID: 35488860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small RNA-Sequencing for Analysis of Circulating miRNAs: Benchmark Study.
    Androvic P; Benesova S; Rohlova E; Kubista M; Valihrach L
    J Mol Diagn; 2022 Apr; 24(4):386-394. PubMed ID: 35081459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A benchmarking of workflows for detecting differential splicing and differential expression at isoform level in human RNA-seq studies.
    Merino GA; Conesa A; Fernández EA
    Brief Bioinform; 2019 Mar; 20(2):471-481. PubMed ID: 29040385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq.
    Williams CR; Baccarella A; Parrish JZ; Kim CC
    BMC Bioinformatics; 2017 Jan; 18(1):38. PubMed ID: 28095772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.