BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37816714)

  • 1. Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2.
    Ramachandran S; Makukhin N; Haubrich K; Nagala M; Forrester B; Lynch DM; Casement R; Testa A; Bruno E; Gitto R; Ciulli A
    Nat Commun; 2023 Oct; 14(1):6345. PubMed ID: 37816714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase: suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2).
    Bulatov E; Martin EM; Chatterjee S; Knebel A; Shimamura S; Konijnenberg A; Johnson C; Zinn N; Grandi P; Sobott F; Ciulli A
    J Biol Chem; 2015 Feb; 290(7):4178-91. PubMed ID: 25505247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase.
    Kung WW; Ramachandran S; Makukhin N; Bruno E; Ciulli A
    Nat Commun; 2019 Jun; 10(1):2534. PubMed ID: 31182716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology.
    Michaelides IN; Collie GW
    J Med Chem; 2023 Mar; 66(5):3173-3194. PubMed ID: 36821822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones.
    Ishida T; Ciulli A
    SLAS Discov; 2021 Apr; 26(4):484-502. PubMed ID: 33143537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of E3 Ligase Ligands for Target Protein Degradation.
    Lee J; Lee Y; Jung YM; Park JH; Yoo HS; Park J
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications.
    Ward CC; Kleinman JI; Brittain SM; Lee PS; Chung CYS; Kim K; Petri Y; Thomas JR; Tallarico JA; McKenna JM; Schirle M; Nomura DK
    ACS Chem Biol; 2019 Nov; 14(11):2430-2440. PubMed ID: 31059647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimeric switch of Hakai-truncated monomers during substrate recognition: insights from solution studies and NMR structure.
    Mukherjee M; Jing-Song F; Ramachandran S; Guy GR; Sivaraman J
    J Biol Chem; 2014 Sep; 289(37):25611-23. PubMed ID: 25074933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the C-terminal SH2 domain of the p85alpha regulatory subunit of phosphoinositide 3-kinase: an SH2 domain mimicking its own substrate.
    Hoedemaeker FJ; Siegal G; Roe SM; Driscoll PC; Abrahams JP
    J Mol Biol; 1999 Oct; 292(4):763-70. PubMed ID: 10525402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SH2 domain: versatile signaling module and pharmaceutical target.
    Machida K; Mayer BJ
    Biochim Biophys Acta; 2005 Feb; 1747(1):1-25. PubMed ID: 15680235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels.
    Vesterlund M; Zadjali F; Persson T; Nielsen ML; Kessler BM; Norstedt G; Flores-Morales A
    PLoS One; 2011; 6(9):e25358. PubMed ID: 21980433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of a covalent complex between a dipeptide ligand and the src SH2 domain.
    Alligood KJ; Charifson PS; Crosby R; Consler TG; Feldman PL; Gampe RT; Gilmer TM; Jordan SR; Milstead MW; Mohr C; Peel MR; Rocque W; Rodriguez M; Rusnak DW; Shewchuk LM; Sternbach DD
    Bioorg Med Chem Lett; 1998 May; 8(10):1189-94. PubMed ID: 9871733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Phosphotyrosine Peptides that Target the SH2 Domain of SOCS1 and Block Substrate Ubiquitination.
    Chen H; Wu Y; Li K; Currie I; Keating N; Dehkhoda F; Grohmann C; Babon JJ; Nicholson SE; Sleebs BE
    ACS Chem Biol; 2022 Feb; 17(2):449-462. PubMed ID: 34989544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment-Based Covalent Ligand Screening Enables Rapid Discovery of Inhibitors for the RBR E3 Ubiquitin Ligase HOIP.
    Johansson H; Isabella Tsai YC; Fantom K; Chung CW; Kümper S; Martino L; Thomas DA; Eberl HC; Muelbaier M; House D; Rittinger K
    J Am Chem Soc; 2019 Feb; 141(6):2703-2712. PubMed ID: 30657686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Journey of Von Hippel-Lindau (VHL) E3 ligase in PROTACs design: From VHL ligands to VHL-based degraders.
    Setia N; Almuqdadi HTA; Abid M
    Eur J Med Chem; 2024 Feb; 265():116041. PubMed ID: 38199162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rise of covalent proteolysis targeting chimeras.
    Gabizon R; London N
    Curr Opin Chem Biol; 2021 Jun; 62():24-33. PubMed ID: 33549806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies.
    Kükenshöner T; Schmit NE; Bouda E; Sha F; Pojer F; Koide A; Seeliger M; Koide S; Hantschel O
    J Mol Biol; 2017 May; 429(9):1364-1380. PubMed ID: 28347651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptidyl aldehydes as reversible covalent inhibitors of SRC homology 2 domains.
    Park J; Fu H; Pei D
    Biochemistry; 2003 May; 42(17):5159-67. PubMed ID: 12718560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site-Specifically Engage DCAF1.
    Tao Y; Remillard D; Vinogradova EV; Yokoyama M; Banchenko S; Schwefel D; Melillo B; Schreiber SL; Zhang X; Cravatt BF
    J Am Chem Soc; 2022 Oct; 144(40):18688-18699. PubMed ID: 36170674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of reversible and irreversible covalent chemistry in targeted protein degradation.
    Kiely-Collins H; Winter GE; Bernardes GJL
    Cell Chem Biol; 2021 Jul; 28(7):952-968. PubMed ID: 33789091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.