These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37816778)

  • 1. Temperature mapping on a niobium-coated copper superconducting radio-frequency cavity.
    Bianchi A; Venturini Delsolaro W
    Sci Rep; 2023 Oct; 13(1):17075. PubMed ID: 37816778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct current magnetic Hall probe technique for measurement of field penetration in thin film superconductors for superconducting radio frequency resonators.
    Senevirathne IH; Gurevich A; Delayen JR
    Rev Sci Instrum; 2022 May; 93(5):055104. PubMed ID: 35649811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.
    Dhakal P; Ciovati G; Rigby W; Wallace J; Myneni GR
    Rev Sci Instrum; 2012 Jun; 83(6):065105. PubMed ID: 22755660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nb
    Eremeev G; Clemens W; Macha K; Reece CE; Valente-Feliciano AM; Williams S; Pudasaini U; Kelley M
    Rev Sci Instrum; 2020 Jul; 91(7):073911. PubMed ID: 32752803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient.
    Tan T; Wolak MA; Xi XX; Tajima T; Civale L
    Sci Rep; 2016 Oct; 6():35879. PubMed ID: 27775087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Quality Factor Degradation in Superconducting Niobium Cavities at Low Microwave Field Amplitudes.
    Romanenko A; Schuster DI
    Phys Rev Lett; 2017 Dec; 119(26):264801. PubMed ID: 29328733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution diagnostic tools for superconducting radio frequency cavities.
    Parajuli I; Ciovati G; Delayen JR
    Rev Sci Instrum; 2022 Nov; 93(11):113305. PubMed ID: 36461557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Electropolishing for High-Gradient 1.3 GHz and 3.9 GHz Niobium Cavities.
    Zong Y; Chen J; Wang D; Xia R; Wu J; Wang Z; Xing S; Wu X; He X; Wang X
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No interface energy barrier and increased surface pinning in low temperature baked niobium.
    Turner DA; Burt G; Junginger T
    Sci Rep; 2022 Apr; 12(1):5522. PubMed ID: 35365699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators.
    Ricker RE; Myneni GR
    J Res Natl Inst Stand Technol; 2010; 115(5):353-71. PubMed ID: 27134791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing materials for superconducting radiofrequency applications-A comprehensive overview of the quadrupole resonator design and measurement capabilities.
    Keckert S; Kleindienst R; Kugeler O; Tikhonov D; Knobloch J
    Rev Sci Instrum; 2021 Jun; 92(6):064710. PubMed ID: 34243532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field-Enhanced Superconductivity in High-Frequency Niobium Accelerating Cavities.
    Martinello M; Checchin M; Romanenko A; Grassellino A; Aderhold S; Chandrasekeran SK; Melnychuk O; Posen S; Sergatskov DA
    Phys Rev Lett; 2018 Nov; 121(22):224801. PubMed ID: 30547616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First Scan Search for Dark Photon Dark Matter with a Tunable Superconducting Radio-Frequency Cavity.
    Tang Z; Wang B; Chen Y; Zeng Y; Li C; Yang Y; Feng L; Sha P; Mi Z; Pan W; Zhang T; Jin Y; Hao J; Lin L; Wang F; Xie H; Huang S; Shu J;
    Phys Rev Lett; 2024 Jul; 133(2):021005. PubMed ID: 39073930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into surface composition of nitrogen-doped niobium for superconducting RF cavities.
    Yang L; Liu B; Ye Z; Yang C; Wang Z; Chen B; Chen J; Sha P; Dong C; Zhu J; Li Z; Yan R; Ding R; Zhang K; Gou F
    Nanotechnology; 2021 Mar; 32(24):. PubMed ID: 33657546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetometric mapping of superconducting RF cavities.
    Schmitz B; Köszegi J; Alomari K; Kugeler O; Knobloch J
    Rev Sci Instrum; 2018 May; 89(5):054706. PubMed ID: 29864856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of Nb
    Sundahl C; Makita J; Welander PB; Su YF; Kametani F; Xie L; Zhang H; Li L; Gurevich A; Eom CB
    Sci Rep; 2021 Apr; 11(1):7770. PubMed ID: 33833275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence of microstructure dependence of magnetic flux trapping in niobium.
    Balachandran S; Polyanskii A; Chetri S; Dhakal P; Su YF; Sung ZH; Lee PJ
    Sci Rep; 2021 Mar; 11(1):5364. PubMed ID: 33686195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.
    Ciovati G; Anlage SM; Baldwin C; Cheng G; Flood R; Jordan K; Kneisel P; Morrone M; Nemes G; Turlington L; Wang H; Wilson K; Zhang S
    Rev Sci Instrum; 2012 Mar; 83(3):034704. PubMed ID: 22462945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.
    Xiao BP; Reece CE; Phillips HL; Geng RL; Wang H; Marhauser F; Kelley MJ
    Rev Sci Instrum; 2011 May; 82(5):056104. PubMed ID: 21639552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic field measurement near a superconducting film using a 2-dimensional field-dependence of Josephson current through a Nb tunnel junctions sensor.
    Nakayama A; Abe S; Watanabe N; Okabe Y
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5016-20. PubMed ID: 22905569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.