These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37817044)
1. MRI feature-based radiomics models to predict treatment outcome after stereotactic body radiotherapy for spinal metastases. Chen Y; Qin S; Zhao W; Wang Q; Liu K; Xin P; Yuan H; Zhuang H; Lang N Insights Imaging; 2023 Oct; 14(1):169. PubMed ID: 37817044 [TBL] [Abstract][Full Text] [Related]
2. Radiomic modeling to predict risk of vertebral compression fracture after stereotactic body radiation therapy for spinal metastases. Gui C; Chen X; Sheikh K; Mathews L; Lo SL; Lee J; Khan MA; Sciubba DM; Redmond KJ J Neurosurg Spine; 2022 Feb; 36(2):294-302. PubMed ID: 34560656 [TBL] [Abstract][Full Text] [Related]
3. Radiomics Analysis of Multiparametric MRI for Prediction of Synchronous Lung Metastases in Osteosarcoma. Luo Z; Li J; Liao Y; Liu R; Shen X; Chen W Front Oncol; 2022; 12():802234. PubMed ID: 35273911 [TBL] [Abstract][Full Text] [Related]
4. Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma. Li Z; Chen L; Song Y; Dai G; Duan L; Luo Y; Wang G; Xiao Q; Li G; Bai S Quant Imaging Med Surg; 2023 Jan; 13(1):224-236. PubMed ID: 36620140 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases. Du P; Liu X; Xiang R; Lv K; Chen H; Liu W; Cao A; Chen L; Wang X; Yu T; Ding J; Li W; Li J; Li Y; Yu Z; Zhu L; Liu J; Geng D Eur Radiol; 2023 Dec; 33(12):8925-8935. PubMed ID: 37505244 [TBL] [Abstract][Full Text] [Related]
6. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043 [TBL] [Abstract][Full Text] [Related]
7. Predictive model based on DCE-MRI and clinical features for the evaluation of pain response after stereotactic body radiotherapy in patients with spinal metastases. Chen Y; Wang Q; Zhou G; Liu K; Qin S; Zhao W; Xin P; Yuan H; Zhuang H; Lang N Eur Radiol; 2023 Jul; 33(7):4812-4821. PubMed ID: 36735042 [TBL] [Abstract][Full Text] [Related]
8. Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer. Zhang YF; Zhou C; Guo S; Wang C; Yang J; Yang ZJ; Wang R; Zhang X; Zhou FH J Cancer Res Clin Oncol; 2024 Feb; 150(2):78. PubMed ID: 38316655 [TBL] [Abstract][Full Text] [Related]
9. CT-based radiomics prediction of complete response after stereotactic body radiation therapy for patients with lung metastases. Cilla S; Pistilli D; Romano C; Macchia G; Pierro A; Arcelli A; Buwenge M; Morganti AG; Deodato F Strahlenther Onkol; 2023 Jul; 199(7):676-685. PubMed ID: 37256303 [TBL] [Abstract][Full Text] [Related]
10. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients. Ren M; Yang H; Lai Q; Shi D; Liu G; Shuang X; Su J; Xie L; Dong Y; Jiang X Med Phys; 2021 Sep; 48(9):5142-5151. PubMed ID: 34318502 [TBL] [Abstract][Full Text] [Related]
11. Multiparametric MRI-Based Radiomics Approaches for Preoperative Prediction of EGFR Mutation Status in Spinal Bone Metastases in Patients with Lung Adenocarcinoma. Jiang X; Ren M; Shuang X; Yang H; Shi D; Lai Q; Dong Y J Magn Reson Imaging; 2021 Aug; 54(2):497-507. PubMed ID: 33638577 [TBL] [Abstract][Full Text] [Related]
12. Multi-Parametric Magnetic Resonance Imaging-Based Radiomics Analysis of Cervical Cancer for Preoperative Prediction of Lymphovascular Space Invasion. Huang G; Cui Y; Wang P; Ren J; Wang L; Ma Y; Jia Y; Ma X; Zhao L Front Oncol; 2021; 11():663370. PubMed ID: 35096556 [TBL] [Abstract][Full Text] [Related]
13. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Wang G; He L; Yuan C; Huang Y; Liu Z; Liang C Eur J Radiol; 2018 Jan; 98():100-106. PubMed ID: 29279146 [TBL] [Abstract][Full Text] [Related]
14. Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal cancer. Tong P; Sun D; Chen G; Ni J; Li Y BMC Cancer; 2023 Jan; 23(1):61. PubMed ID: 36650498 [TBL] [Abstract][Full Text] [Related]
15. [Application of MRI-based Radiomics Models in the Assessment of Hepatic Metastasis of Rectal Cancer]. Hu SX; Yang K; Wang XR; Wen DG; Xia CC; Li X; Li ZL Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):311-318. PubMed ID: 33829708 [TBL] [Abstract][Full Text] [Related]
16. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging. Dai H; Lu M; Huang B; Tang M; Pang T; Liao B; Cai H; Huang M; Zhou Y; Chen X; Ding H; Feng ST Quant Imaging Med Surg; 2021 May; 11(5):1836-1853. PubMed ID: 33936969 [TBL] [Abstract][Full Text] [Related]
17. Prediction of recurrence of ischemic stroke within 1 year of discharge based on machine learning MRI radiomics. Liu J; Wu Y; Jia W; Han M; Chen Y; Li J; Wu B; Yin S; Zhang X; Chen J; Yu P; Luo H; Tu J; Zhou F; Cheng X; Yi Y Front Neurosci; 2023; 17():1110579. PubMed ID: 37214402 [TBL] [Abstract][Full Text] [Related]
18. MRI-based radiomics analysis to predict preoperative lymph node metastasis in papillary thyroid carcinoma. Hu W; Wang H; Wei R; Wang L; Dai Z; Duan S; Ge Y; Wu PY; Song B Gland Surg; 2020 Oct; 9(5):1214-1226. PubMed ID: 33224796 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model. Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F Front Oncol; 2021; 11():618604. PubMed ID: 34567999 [TBL] [Abstract][Full Text] [Related]
20. A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI. Wang T; Gong J; Li Q; Chu C; Shen W; Peng W; Gu Y; Li W Eur Radiol; 2021 Aug; 31(8):6125-6135. PubMed ID: 33486606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]