These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37817206)
1. Improved production of β-carotene in light-powered Escherichia coli by co-expression of Gloeobacter rhodopsin expression. Lee CY; Chen KW; Chiang CL; Kao HY; Yu HC; Lee HC; Chen WL Microb Cell Fact; 2023 Oct; 22(1):207. PubMed ID: 37817206 [TBL] [Abstract][Full Text] [Related]
2. An evolutionary optimization of a rhodopsin-based phototrophic metabolism in Escherichia coli. Kim HA; Kim HJ; Park J; Choi AR; Heo K; Jeong H; Jung KH; Seok YJ; Kim P; Lee SJ Microb Cell Fact; 2017 Jun; 16(1):111. PubMed ID: 28619035 [TBL] [Abstract][Full Text] [Related]
3. [Heterologous expression and function evaluation of Gloeobacter violaceus rhodopsin in Escherichia coli]. Fang J; Zhu T; Zhang Y; Li Y Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):604-614. PubMed ID: 33645158 [TBL] [Abstract][Full Text] [Related]
4. Genome Variations of Evolved Escherichia coli ET8 With a Rhodopsin-Based Phototrophic Metabolism. Kim HA; Kim HJ; Lee MJ; Park J; Choi AR; Jeong H; Jung KH; Kim P; Lee SJ Biotechnol J; 2018 Jul; 13(7):e1700497. PubMed ID: 29469946 [TBL] [Abstract][Full Text] [Related]
5. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. Choi AR; Shi L; Brown LS; Jung KH PLoS One; 2014; 9(10):e110643. PubMed ID: 25347537 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group. Balashov SP; Imasheva ES; Choi AR; Jung KH; Liaaen-Jensen S; Lanyi JK Biochemistry; 2010 Nov; 49(45):9792-9. PubMed ID: 20942439 [TBL] [Abstract][Full Text] [Related]
7. ATP regeneration system using E. coli ATP synthase and Gloeobacter rhodopsin and its stability. Lee KA; Jung KH J Nanosci Nanotechnol; 2011 May; 11(5):4261-4. PubMed ID: 21780438 [TBL] [Abstract][Full Text] [Related]
8. Growth retardation of Escherichia coli by artificial increase of intracellular ATP. Na YA; Lee JY; Bang WJ; Lee HJ; Choi SI; Kwon SK; Jung KH; Kim JF; Kim P J Ind Microbiol Biotechnol; 2015 Jun; 42(6):915-24. PubMed ID: 25838237 [TBL] [Abstract][Full Text] [Related]
9. The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system. Chuon K; Shim JG; Kim SH; Cho SG; Meas S; Kang KW; Kim JH; Das I; Sheves M; Jung KH J Photochem Photobiol B; 2021 Aug; 221():112241. PubMed ID: 34130090 [TBL] [Abstract][Full Text] [Related]
10. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase. Kim JY; Jo BH; Jo Y; Cha HJ Microb Cell Fact; 2012 Jan; 11():2. PubMed ID: 22217184 [TBL] [Abstract][Full Text] [Related]
11. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Lemuth K; Steuer K; Albermann C Microb Cell Fact; 2011 Apr; 10():29. PubMed ID: 21521516 [TBL] [Abstract][Full Text] [Related]
12. Characterization of cyanobacterial beta-carotene ketolase and hydroxylase genes in Escherichia coli, and their application for astaxanthin biosynthesis. Scaife MA; Burja AM; Wright PC Biotechnol Bioeng; 2009 Aug; 103(5):944-55. PubMed ID: 19365869 [TBL] [Abstract][Full Text] [Related]
13. Coupling a Live Cell Directed Evolution Assay with Coevolutionary Landscapes to Engineer an Improved Fluorescent Rhodopsin Chloride Sensor. Chi H; Zhou Q; Tutol JN; Phelps SM; Lee J; Kapadia P; Morcos F; Dodani SC ACS Synth Biol; 2022 Apr; 11(4):1627-1638. PubMed ID: 35389621 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Park SY; Binkley RM; Kim WJ; Lee MH; Lee SY Metab Eng; 2018 Sep; 49():105-115. PubMed ID: 30096424 [TBL] [Abstract][Full Text] [Related]
15. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production]. Jin Y; Han L; Zhang S; Li S; Liu W; Tao Y Sheng Wu Gong Cheng Xue Bao; 2017 Nov; 33(11):1814-1826. PubMed ID: 29202518 [TBL] [Abstract][Full Text] [Related]
16. Proton-pumping photoreceptor controls expression of ABC transporter by regulating transcription factor through light. Shim JG; Chuon K; Kim JH; Lee SJ; Song MC; Cho SG; Hour C; Jung KH Commun Biol; 2024 Jun; 7(1):789. PubMed ID: 38951607 [TBL] [Abstract][Full Text] [Related]
18. Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Yoon SH; Park HM; Kim JE; Lee SH; Choi MS; Kim JY; Oh DK; Keasling JD; Kim SW Biotechnol Prog; 2007; 23(3):599-605. PubMed ID: 17500531 [TBL] [Abstract][Full Text] [Related]
19. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Kajiwara S; Fraser PD; Kondo K; Misawa N Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):421-6. PubMed ID: 9182699 [TBL] [Abstract][Full Text] [Related]
20. Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO Davison PA; Tu W; Xu J; Della Valle S; Thompson IP; Hunter CN; Huang WE ACS Synth Biol; 2022 Nov; 11(11):3805-3816. PubMed ID: 36264158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]