These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37817578)

  • 1. Crosslinking strategies in modulating methylcellulose hydrogel properties.
    Bonetti L; De Nardo L; Farè S
    Soft Matter; 2023 Oct; 19(41):7869-7884. PubMed ID: 37817578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels.
    Bonetti L; De Nardo L; Variola F; Fare' S
    Soft Matter; 2020 Jun; 16(24):5577-5587. PubMed ID: 32406462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials.
    Bonetti L; De Nardo L; Farè S
    Tissue Eng Part B Rev; 2021 Oct; 27(5):486-513. PubMed ID: 33115329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically Crosslinked Methylcellulose Substrates for Cell Sheet Engineering.
    Bonetti L; De Nardo L; Farè S
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.
    Altomare L; Cochis A; Carletta A; Rimondini L; Farè S
    J Mater Sci Mater Med; 2016 May; 27(5):95. PubMed ID: 26984360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels.
    Yeo YH; Park WH
    Carbohydr Polym; 2021 Apr; 258():117705. PubMed ID: 33593575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosslinking Kinetics of Methylcellulose Aqueous Solution and Its Potential as a Scaffold for Tissue Engineering.
    Niemczyk-Soczynska B; Gradys A; Kolbuk D; Krzton-Maziopa A; Sajkiewicz P
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31661795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart Methylcellulose Hydrogels for pH-Triggered Delivery of Silver Nanoparticles.
    Bonetti L; Fiorati A; D'Agostino A; Pelacani CM; Chiesa R; Farè S; De Nardo L
    Gels; 2022 May; 8(5):. PubMed ID: 35621596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature- and pH-induced dual-crosslinked methylcellulose/chitosan-gallol conjugate composite hydrogels with improved mechanical, tissue adhesive, and hemostatic properties.
    Hwang SM; Kim E; Wu J; Kim MH; Lee H; Park WH
    Int J Biol Macromol; 2024 Jul; 277(Pt 1):134098. PubMed ID: 39048009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of vitamin derivatives on gelation rate and gel strength of methylcellulose.
    Kim MH; Park H; Shin JY; Park WH
    Carbohydr Polym; 2018 Sep; 196():414-421. PubMed ID: 29891313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K
    Chen YC; Chen YH
    Sci Total Environ; 2019 Mar; 655():958-967. PubMed ID: 30609636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A methylcellulose/agarose hydrogel as an innovative scaffold for tissue engineering.
    Niemczyk-Soczynska B; Gradys A; Kolbuk D; Krzton-Maziopa A; Rogujski P; Stanaszek L; Lukomska B; Sajkiewicz P
    RSC Adv; 2022 Sep; 12(41):26882-26894. PubMed ID: 36320849
    [No Abstract]   [Full Text] [Related]  

  • 14. Robust methylcellulose hydrogels reinforced with chitin nanocrystals.
    Jung HS; Kim HC; Ho Park W
    Carbohydr Polym; 2019 Jun; 213():311-319. PubMed ID: 30879674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.
    Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C
    Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel.
    Cochis A; Grad S; Stoddart MJ; Farè S; Altomare L; Azzimonti B; Alini M; Rimondini L
    Sci Rep; 2017 Mar; 7():45018. PubMed ID: 28332587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels.
    Varshosaz J; Sajadi-Javan ZS; Kouhi M; Mirian M
    Int J Biol Macromol; 2021 Dec; 192():869-882. PubMed ID: 34634330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing.
    Kim MH; Park H; Nam HC; Park SR; Jung JY; Park WH
    Carbohydr Polym; 2018 Feb; 181():579-586. PubMed ID: 29254010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of injectable methylcellulose hydrogel containing calcium phosphate nanoparticles.
    Park H; Kim MH; Yoon YI; Park WH
    Carbohydr Polym; 2017 Feb; 157():775-783. PubMed ID: 27987990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium phosphate incorporated in silk fibroin/methylcellulose based injectable hydrogel: Preparation, characterization, and in vitro biological evaluation for bone defect treatment.
    Phewchan P; Laoruengthana A; Tiyaboonchai W
    J Biomed Mater Res B Appl Biomater; 2023 Sep; 111(9):1640-1652. PubMed ID: 37194686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.