These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 37817658)
1. Role of Polyphenols, Their Nano-formulations, and Biomaterials in Diabetic Wound Healing. Emad NA; Zai I; Ahmad S; Pandit J; Khan MA; Sultana Y Endocr Metab Immune Disord Drug Targets; 2024; 24(6):626-641. PubMed ID: 37817658 [TBL] [Abstract][Full Text] [Related]
2. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Ahmed R; Augustine R; Chaudhry M; Akhtar UA; Zahid AA; Tariq M; Falahati M; Ahmad IS; Hasan A Biomed Pharmacother; 2022 May; 149():112707. PubMed ID: 35303565 [TBL] [Abstract][Full Text] [Related]
3. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Shah SA; Sohail M; Khan S; Minhas MU; de Matas M; Sikstone V; Hussain Z; Abbasi M; Kousar M Int J Biol Macromol; 2019 Oct; 139():975-993. PubMed ID: 31386871 [TBL] [Abstract][Full Text] [Related]
4. Recent Advances in Nano-Drug Delivery Systems for the Treatment of Diabetic Wound Healing. Liu M; Wei X; Zheng Z; Li Y; Li M; Lin J; Yang L Int J Nanomedicine; 2023; 18():1537-1560. PubMed ID: 37007988 [TBL] [Abstract][Full Text] [Related]
5. Opening eyes to therapeutic perspectives of bioactive polyphenols and their nanoformulations against diabetic neuropathy and related complications. Khursheed R; Singh SK; Wadhwa S; Gulati M; Kapoor B; Awasthi A; Kr A; Kumar R; Pottoo FH; Kumar V; Dureja H; Anand K; Chellappan DK; Dua K; Gowthamarajan K Expert Opin Drug Deliv; 2021 Apr; 18(4):427-448. PubMed ID: 33356647 [No Abstract] [Full Text] [Related]
6. Functionalised biomaterials as synthetic extracellular matrices to promote vascularisation and healing of diabetic wounds. Browne S; Petit N; Quondamatteo F Cell Tissue Res; 2024 Feb; 395(2):133-145. PubMed ID: 38051351 [TBL] [Abstract][Full Text] [Related]
7. Emerging Nanotherapeutic Approaches for Diabetic Wound Healing. Shi S; Hu L; Hu D; Ou X; Huang Y Int J Nanomedicine; 2024; 19():8815-8830. PubMed ID: 39220193 [TBL] [Abstract][Full Text] [Related]
8. Recent advances in biomaterials for the treatment of diabetic foot ulcers. Kasiewicz LN; Whitehead KA Biomater Sci; 2017 Sep; 5(10):1962-1975. PubMed ID: 28829074 [TBL] [Abstract][Full Text] [Related]
9. The protective role of resveratrol in diabetic wound healing. Bi M; Qin Y; Wang L; Zhang J Phytother Res; 2023 Nov; 37(11):5193-5204. PubMed ID: 37767805 [TBL] [Abstract][Full Text] [Related]
10. Advanced Drug Delivery System for Management of Chronic Diabetes Wound Healing. Bhardwaj H; Khute S; Sahu R; Jangde RK Curr Drug Targets; 2023; 24(16):1239-1259. PubMed ID: 37957907 [TBL] [Abstract][Full Text] [Related]
11. Treatment Management of Diabetic Wounds Utilizing Herbalism: An Overview. Kumari P; Sharma S; Sharma PK; Alam A Curr Diabetes Rev; 2023; 19(1):e180322202355. PubMed ID: 35306989 [TBL] [Abstract][Full Text] [Related]
12. Construction of Smart Biomaterials for Promoting Diabetic Wound Healing. Huang C; Yuan W; Chen J; Wu LP; You T Molecules; 2023 Jan; 28(3):. PubMed ID: 36770776 [TBL] [Abstract][Full Text] [Related]
13. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Wang X; Li R; Zhao H Biomed Pharmacother; 2024 Jan; 170():116035. PubMed ID: 38113622 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional hydrogel with reactive oxygen species scavenging and photothermal antibacterial activity accelerates infected diabetic wound healing. He Y; Liu K; Guo S; Chang R; Zhang C; Guan F; Yao M Acta Biomater; 2023 Jan; 155():199-217. PubMed ID: 36402298 [TBL] [Abstract][Full Text] [Related]
15. Insights of biopolymeric blended formulations for diabetic wound healing. Sharma A; Dheer D; Puri V; Alsayari A; Wahab S; Kesharwani P Int J Pharm; 2024 May; 656():124099. PubMed ID: 38614431 [TBL] [Abstract][Full Text] [Related]
16. Advancement in Nanoformulations for the Management of Diabetic Wound Healing. Bhadauria SS; Malviya R Endocr Metab Immune Disord Drug Targets; 2022; 22(9):911-926. PubMed ID: 35249512 [TBL] [Abstract][Full Text] [Related]
17. Polymer-based biomaterials for chronic wound management: Promises and challenges. Maaz Arif M; Khan SM; Gull N; Tabish TA; Zia S; Ullah Khan R; Awais SM; Arif Butt M Int J Pharm; 2021 Apr; 598():120270. PubMed ID: 33486030 [TBL] [Abstract][Full Text] [Related]
18. Targeted Nrf2 activation therapy with RTA 408 enhances regenerative capacity of diabetic wounds. Rabbani PS; Ellison T; Waqas B; Sultan D; Abdou S; David JA; Cohen JM; Gomez-Viso A; Lam G; Kim C; Thomson J; Ceradini DJ Diabetes Res Clin Pract; 2018 May; 139():11-23. PubMed ID: 29476889 [TBL] [Abstract][Full Text] [Related]
19. Metal Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. Zheng Q; Chen C; Liu Y; Gao J; Li L; Yin C; Yuan X Int J Nanomedicine; 2024; 19():965-992. PubMed ID: 38293611 [TBL] [Abstract][Full Text] [Related]
20. Poorly designed research does not help clarify the role of hyperbaric oxygen in the treatment of chronic diabetic foot ulcers. Mutluoglu M; Uzun G; Bennett M; Germonpré P; Smart D; Mathieu D Diving Hyperb Med; 2016 Sep; 46(3):133-134. PubMed ID: 27723012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]