These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37817886)

  • 1. Crop/Plant Modeling Supports Plant Breeding: I. Optimization of Environmental Factors in Accelerating Crop Growth and Development for Speed Breeding.
    Yu Y; Cheng Q; Wang F; Zhu Y; Shang X; Jones A; He H; Song Y
    Plant Phenomics; 2023; 5():0099. PubMed ID: 37817886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional-Structural Plant Models Mission in Advancing Crop Science: Opportunities and Prospects.
    Soualiou S; Wang Z; Sun W; de Reffye P; Collins B; Louarn G; Song Y
    Front Plant Sci; 2021; 12():747142. PubMed ID: 35003151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating speed breeding with artificial intelligence for developing climate-smart crops.
    Rai KK
    Mol Biol Rep; 2022 Dec; 49(12):11385-11402. PubMed ID: 35941420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Crop Growth Models to Assist Breeding for Intercropping: Opportunities and Challenges.
    Weih M; Adam E; Vico G; Rubiales D
    Front Plant Sci; 2022; 13():720486. PubMed ID: 35185972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can We Harness "Enviromics" to Accelerate Crop Improvement by Integrating Breeding and Agronomy?
    Cooper M; Messina CD
    Front Plant Sci; 2021; 12():735143. PubMed ID: 34567047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized cultivar deployment improves the efficiency and stability of sunflower crop production at national scale.
    Casadebaig P; Gauffreteau A; Landré A; Langlade NB; Mestries E; Sarron J; Trépos R; Vincourt P; Debaeke P
    Theor Appl Genet; 2022 Nov; 135(11):4049-4063. PubMed ID: 35294575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crop/Plant Modeling Supports Plant Breeding: II. Guidance of Functional Plant Phenotyping for Trait Discovery.
    Zhang P; Huang J; Ma Y; Wang X; Kang M; Song Y
    Plant Phenomics; 2023; 5():0091. PubMed ID: 37780969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A trait-based model ensemble approach to design rice plant types for future climate.
    Paleari L; Li T; Yang Y; Wilson LT; Hasegawa T; Boote KJ; Buis S; Hoogenboom G; Gao Y; Movedi E; Ruget F; Singh U; Stöckle CO; Tang L; Wallach D; Zhu Y; Confalonieri R
    Glob Chang Biol; 2022 Apr; 28(8):2689-2710. PubMed ID: 35043531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.
    Onogi A; Watanabe M; Mochizuki T; Hayashi T; Nakagawa H; Hasegawa T; Iwata H
    Theor Appl Genet; 2016 Apr; 129(4):805-817. PubMed ID: 26791836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for accelerating genetic gains in crop plants: special focus on speed breeding.
    Gudi S; Kumar P; Singh S; Tanin MJ; Sharma A
    Physiol Mol Biol Plants; 2022 Oct; 28(10):1921-1938. PubMed ID: 36484026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Environment Ecosystem: A Cutting-Edge Technology in Speed Breeding.
    Sharma A; Hazarika M; Heisnam P; Pandey H; Devadas VASN; Kesavan AK; Kumar P; Singh D; Vashishth A; Jha R; Misra V; Kumar R
    ACS Omega; 2024 Jul; 9(27):29114-29138. PubMed ID: 39005787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Metabolomics-Driven Diagnostic Breeding and Crop Improvement.
    Razzaq A; Wishart DS; Wani SH; Hameed MK; Mubin M; Saleem F
    Metabolites; 2022 Jun; 12(6):. PubMed ID: 35736444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conceptual framework for the dynamic modeling of time-resolved phenotypes for sets of genotype-environment-management combinations: a model library.
    van Voorn GAK; Boer MP; Truong SH; Friedenberg NA; Gugushvili S; McCormick R; Bustos Korts D; Messina CD; van Eeuwijk FA
    Front Plant Sci; 2023; 14():1172359. PubMed ID: 37389290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of crop simulation modelling to aid ideotype design of future cereal cultivars.
    Rötter RP; Tao F; Höhn JG; Palosuo T
    J Exp Bot; 2015 Jun; 66(12):3463-76. PubMed ID: 25795739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop adaptation to climate change: An evolutionary perspective.
    Gao L; Kantar MB; Moxley D; Ortiz-Barrientos D; Rieseberg LH
    Mol Plant; 2023 Oct; 16(10):1518-1546. PubMed ID: 37515323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Crop Models Identify Critical Gaps in Genetics, Environment, and Management Interactions?
    Stöckle CO; Kemanian AR
    Front Plant Sci; 2020; 11():737. PubMed ID: 32595666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enviromics in breeding: applications and perspectives on envirotypic-assisted selection.
    Resende RT; Piepho HP; Rosa GJM; Silva-Junior OB; E Silva FF; de Resende MDV; Grattapaglia D
    Theor Appl Genet; 2021 Jan; 134(1):95-112. PubMed ID: 32964262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cowpea speed breeding using regulated growth chamber conditions and seeds of oven-dried immature pods potentially accommodates eight generations per year.
    Edet OU; Ishii T
    Plant Methods; 2022 Aug; 18(1):106. PubMed ID: 36031612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.