BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37817983)

  • 1. Morphological features of the photoplethysmographic signal: a new approach to characterize the microcirculatory response to photobiomodulation.
    Ovadia-Blechman Z; Hauptman Y; Rabin N; Wiezman G; Hoffer O; Gertz SD; Gavish B; Gavish L
    Front Physiol; 2023; 14():1175470. PubMed ID: 37817983
    [No Abstract]   [Full Text] [Related]  

  • 2. Microcirculatory Response to Photobiomodulation-Why Some Respond and Others Do Not: A Randomized Controlled Study.
    Gavish L; Hoffer O; Rabin N; Halak M; Shkilevich S; Shayovitz Y; Weizman G; Haim O; Gavish B; Gertz SD; Ovadia-Blechman Z
    Lasers Surg Med; 2020 Nov; 52(9):863-872. PubMed ID: 32064652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study.
    Hickey M; Phillips JP; Kyriacou PA
    J Clin Monit Comput; 2016 Oct; 30(5):727-36. PubMed ID: 26318315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplitude and phase measurements from harmonic analysis may lead to new physiologic insights: lower body negative pressure photoplethysmographic waveforms as an example.
    Alian A; Shelley K; Wu HT
    J Clin Monit Comput; 2023 Feb; 37(1):127-137. PubMed ID: 35896756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the correlation between photoplethysmography and laser Doppler flowmetry microvascular low-frequency oscillations.
    Mizeva I; Di Maria C; Frick P; Podtaev S; Allen J
    J Biomed Opt; 2015 Mar; 20(3):037007. PubMed ID: 25764202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of vascular changes on the photoplethysmographic signal at different hand elevations.
    Hickey M; Phillips JP; Kyriacou PA
    Physiol Meas; 2015 Mar; 36(3):425-40. PubMed ID: 25652182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of photoplethysmographic waveforms with application of antihypertensive medication in hypertensive patients.
    Hu Y; Hu A; Song S
    Ann Noninvasive Electrocardiol; 2022 May; 27(3):e12941. PubMed ID: 35239217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E; Lazaro J; Bailon R; Marozas V; Gil E
    Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals.
    Binzoni T; Tchernin D; Hyacinthe JN; Van De Ville D; Richiardi J
    Physiol Meas; 2013 Mar; 34(3):N25-40. PubMed ID: 23443008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular blood flow and skin temperature changes in the fingers following a deep nspiratory gasp.
    Allen J; Frame JR; Murray A
    Physiol Meas; 2002 May; 23(2):365-73. PubMed ID: 12051308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe.
    Abdollahi Z; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1728-31. PubMed ID: 24110040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers. Part 1: time domain analysis.
    Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH
    J Clin Monit Comput; 2011 Dec; 25(6):377-85. PubMed ID: 22051898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments.
    Askarian B; Jung K; Chong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of local cold and warm exposure on index finger photoplethysmographic signal waveform.
    Pilt K; Meigas K; Temitski K; Viigimaa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2300-3. PubMed ID: 24110184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On non-invasive measurement of gastric motility from finger photoplethysmographic signal.
    Yacin SM; Manivannan M; Chakravarthy VS
    Ann Biomed Eng; 2010 Dec; 38(12):3744-55. PubMed ID: 20614246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Comparison of Photoplethysmographic Waveform Characteristics: Effect of Measurement Site.
    Hartmann V; Liu H; Chen F; Qiu Q; Hughes S; Zheng D
    Front Physiol; 2019; 10():198. PubMed ID: 30890959
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of intracranial pressure on photoplethysmographic waveform in different cerebral perfusion territories: A computational study.
    Liu H; Pan F; Lei X; Hui J; Gong R; Feng J; Zheng D
    Front Physiol; 2023; 14():1085871. PubMed ID: 37007991
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of photobiomodulation in secondary intention gingival wound healing-a systematic review and meta-analysis.
    Ebrahimi P; Hadilou M; Naserneysari F; Dolatabadi A; Tarzemany R; Vahed N; Nikniaz L; Fekrazad R; Gholami L
    BMC Oral Health; 2021 May; 21(1):258. PubMed ID: 33985492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms.
    Hsiu H; Hsu CL; Wu TL
    Proc Inst Mech Eng H; 2011 Jun; 225(6):575-83. PubMed ID: 22034741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.