These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37818234)

  • 1. Study on human-SRL synchronized walking based on coupled impedance.
    Liu Z; Xiang K; He W; Gao X; Peng Y; Pang M
    Front Neurorobot; 2023; 17():1252947. PubMed ID: 37818234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Supernumerary Soft Robotic Limb for Reducing Hand-Arm Vibration Syndromes Risks.
    Ciullo AS; Catalano MG; Bicchi A; Ajoudani A
    Front Robot AI; 2021; 8():650613. PubMed ID: 34490355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable Supernumerary Robotic Limb System Using a Hybrid Control Approach Based on Motor Imagery and Object Detection.
    Tang Z; Zhang L; Chen X; Ying J; Wang X; Wang H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1298-1309. PubMed ID: 35511846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of Fast Walking With Human-Driven Load-Carrying Robot Exoskeletons.
    Zhang T; Braun DJ
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1971-1981. PubMed ID: 35834449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to a Twin Dual-Axis Robotic Platform for Studies of Lower Limb Biomechanics.
    Russell JB; Phillips CM; Auer MR; Phan V; Jo K; Save O; Nalam V; Lee H
    IEEE J Transl Eng Health Med; 2023; 11():282-290. PubMed ID: 37275470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle as a tunable material: implications for achieving muscle-like function in robotic prosthetic devices.
    Nishikawa K; Huck TG
    J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34605903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of toe joint stiffness and toe shape on walking biomechanics.
    Honert EC; Bastas G; Zelik KE
    Bioinspir Biomim; 2018 Oct; 13(6):066007. PubMed ID: 30187893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mediolateral damping of an overhead body weight support system assists stability during treadmill walking.
    Bannwart M; Bayer SL; König Ignasiak N; Bolliger M; Rauter G; Easthope CA
    J Neuroeng Rehabil; 2020 Aug; 17(1):108. PubMed ID: 32778127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger.
    Hussain I; Spagnoletti G; Salvietti G; Prattichizzo D
    Front Neurorobot; 2016; 10():18. PubMed ID: 27891088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait-Assist Wearable Robot Using Interactive Rhythmic Stimulation to the Upper Limbs.
    Yap RMS; Ogawa KI; Hirobe Y; Nagashima T; Seki M; Nakayama M; Ichiryu K; Miyake Y
    Front Robot AI; 2019; 6():25. PubMed ID: 33501041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Damping Perception During Active Ankle and Knee Movement.
    Azocar AF; Shorter AL; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):198-206. PubMed ID: 30676966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Peshkin MA; Kuiken TA
    J Biomech Eng; 2013 Aug; 135(8):81009. PubMed ID: 23719922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of biomechanical compliance, leverage, and power in elephant limbs.
    Ren L; Miller CE; Lair R; Hutchinson JR
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):7078-82. PubMed ID: 20351297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stiffness Perception During Active Ankle and Knee Movement.
    Azocar AF; Rouse EJ
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2949-2956. PubMed ID: 28410094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple mass-spring model with roller feet can induce the ground reactions observed in human walking.
    Whittington BR; Thelen DG
    J Biomech Eng; 2009 Jan; 131(1):011013. PubMed ID: 19045929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing stiffness of shock-absorbing pylon amplifies prosthesis energy loss and redistributes joint mechanical work during walking.
    Maun JA; Gard SA; Major MJ; Takahashi KZ
    J Neuroeng Rehabil; 2021 Sep; 18(1):143. PubMed ID: 34548080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Iterative Learning Gain That Optimizes Real-Time Torque Tracking for Ankle Exoskeletons in Human Walking Under Gait Variations.
    Zhang J; Collins SH
    Front Neurorobot; 2021; 15():653409. PubMed ID: 34122032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.