These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37818258)

  • 41. Catalytic Hydroboration and Reductive Amination of Carbonyl Compounds by HBpin using a Zinc Promoter.
    Kumar R; Rawal P; Banerjee I; Pada Nayek H; Gupta P; Panda TK
    Chem Asian J; 2022 Mar; 17(5):e202200013. PubMed ID: 35020275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A general carbonyl alkylative amination for tertiary amine synthesis.
    Kumar R; Flodén NJ; Whitehurst WG; Gaunt MJ
    Nature; 2020 May; 581(7809):415-420. PubMed ID: 32268340
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen.
    Irrgang T; Kempe R
    Chem Rev; 2020 Sep; 120(17):9583-9674. PubMed ID: 32812752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Synthesis of Primary Amines through Reductive Amination Employing an Iron Catalyst.
    Bäumler C; Bauer C; Kempe R
    ChemSusChem; 2020 Jun; 13(12):3110-3114. PubMed ID: 32314866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines.
    Senthamarai T; Murugesan K; Schneidewind J; Kalevaru NV; Baumann W; Neumann H; Kamer PCJ; Beller M; Jagadeesh RV
    Nat Commun; 2018 Oct; 9(1):4123. PubMed ID: 30297832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iridium-catalyzed direct asymmetric reductive amination utilizing primary alkyl amines as the N-sources.
    Wu Z; Wang W; Guo H; Gao G; Huang H; Chang M
    Nat Commun; 2022 Jun; 13(1):3344. PubMed ID: 35688909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The synthesis of
    Zenner A; Steinmetzer J; Ueberschaar N; Freesmeyer M; Weigand W; Greiser J
    R Soc Open Sci; 2024 Jul; 11(7):240293. PubMed ID: 39076358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of
    Liao J; Tong J; Liu L; Ouyang L; Luo R
    Molecules; 2024 May; 29(11):. PubMed ID: 38893441
    [No Abstract]   [Full Text] [Related]  

  • 49. [NAD(P)H-dependent oxidoreductases for synthesis of chiral amines by asymmetric reductive amination of ketones].
    Cheng F; Li Q; Li H; Xue Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1794-1816. PubMed ID: 33164457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chiral phosphoric acid catalyzed transfer hydrogenation: facile synthetic access to highly optically active trifluoromethylated amines.
    Henseler A; Kato M; Mori K; Akiyama T
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8180-3. PubMed ID: 21748836
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Iridium-catalysed reductive allylic amination of α,β-unsaturated aldehydes.
    Liu L; Luo R; Tong J; Liao J
    Org Biomol Chem; 2024 Jan; 22(3):585-589. PubMed ID: 38131265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manganese catalyzed reductive amination of aldehydes using hydrogen as a reductant.
    Wei D; Bruneau-Voisine A; Valyaev DA; Lugan N; Sortais JB
    Chem Commun (Camb); 2018 Apr; 54(34):4302-4305. PubMed ID: 29633769
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemoselective Reductive Amination of Carbonyl Compounds for the Synthesis of Tertiary Amines Using SnCl2·2H2O/PMHS/MeOH.
    Nayal OS; Bhatt V; Sharma S; Kumar N
    J Org Chem; 2015 Jun; 80(11):5912-8. PubMed ID: 25938581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silylative Reductive Amination of α,β-Unsaturated Aldehydes: A Convenient Synthetic Route to β-Silylated Secondary Amines.
    Kim E; Park S; Chang S
    Chemistry; 2018 Apr; 24(22):5765-5769. PubMed ID: 29488264
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines.
    Cabrero-Antonino JR; Alberico E; Junge K; Junge H; Beller M
    Chem Sci; 2016 May; 7(5):3432-3442. PubMed ID: 29997838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A facile one-pot process for the formation of hindered tertiary amines.
    Wang Z; Pei D; Zhang Y; Wang C; Sun J
    Molecules; 2012 May; 17(5):5151-63. PubMed ID: 22555302
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tandem synthesis of
    Borthakur I; Srivastava S; Kumari S; Kundu S
    Chem Commun (Camb); 2022 Aug; 58(70):9822-9825. PubMed ID: 35975637
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition.
    Liu RY; Buchwald SL
    Acc Chem Res; 2020 Jun; 53(6):1229-1243. PubMed ID: 32401530
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stable preformed chiral palladium catalysts for the one-pot asymmetric reductive amination of ketones.
    Rubio-Pérez L; Pérez-Flores FJ; Sharma P; Velasco L; Cabrera A
    Org Lett; 2009 Jan; 11(2):265-8. PubMed ID: 19093803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.