These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37819298)

  • 1. A comprehensive Monte Carlo simulation of the neutron response of multi-element microdosimetric detectors based on THick Gas Electron Multiplier.
    Singh R; Byun SH
    Radiat Prot Dosimetry; 2023 Oct; 199(15-16):1958-1962. PubMed ID: 37819298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an advanced two-dimensional microdosimetric detector based on THick Gas Electron Multipliers.
    Darvish-Molla S; Prestwich WV; Byun SH
    Med Phys; 2018 Mar; 45(3):1241-1254. PubMed ID: 29344955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multisignal ionization chamber with a B4C coating as an active neutron beam spectrometer: Monte Carlo simulations.
    Maciak M; Domański S; Tulik P; Tymińska K; Gryziński MA
    Radiat Prot Dosimetry; 2023 Oct; 199(15-16):1883-1888. PubMed ID: 37819336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COMPARISON STUDY OF VARIOUS PLASTICS AS THE WALL MATERIAL OF THGEM-BASED MICRODOSEMETERS FOR FAST NEUTRON MEASUREMENTS.
    Moslehi A; Raisali G; Lamehi M
    Radiat Prot Dosimetry; 2017 Apr; 173(4):286-292. PubMed ID: 26891790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A MULTI-ELEMENT THICK GAS ELECTRON MULTIPLIER-BASED MICRODOSEMETER FOR MEASUREMENT OF NEUTRONS DOSE-EQUIVALENT: A MONTE CARLO STUDY.
    Moslehi A; Raisali G
    Radiat Prot Dosimetry; 2017 Nov; 176(4):404-410. PubMed ID: 28338980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of a Neutron Long Counter Design by Monte Carlo Simulation.
    Park RJ; Byun SH
    Health Phys; 2019 Sep; 117(3):300-305. PubMed ID: 31349356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THE DETERMINATION OF NEUTRON FLUENCE TO ABSORBED DOSE CONVERSION COEFFICIENTS AND RELATIVE BIOLOGICAL EFFECT BASED ON MICRODOSIMETRY MEASUREMENTS.
    Zhang W; Li C; Zou Y; Liu Y; Luo H
    Radiat Prot Dosimetry; 2019 Dec; 187(2):262-267. PubMed ID: 31251366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INVESTIGATION OF APPLICABILITY OF PURE PROPANE GAS FOR MICRODOSIMETRY AT NEUTRON FIELDS: A MONTE CARLO STUDY.
    Chattaraj A; Selvam TP; Datta D
    Radiat Prot Dosimetry; 2019 Nov; 185(1):74-86. PubMed ID: 30576567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WENDI: an improved neutron rem meter.
    Olsher RH; Hsu HH; Beverding A; Kleck JH; Casson WH; Vasilik DG; Devine RT
    Health Phys; 2000 Aug; 79(2):170-81. PubMed ID: 10910387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TISSUE-EQUIVALENCE OF H2 GAS FOR MICRODOSIMETRY IN NEUTRON FIELDS: A GEANT4 MONTE CARLO STUDY.
    Chattaraj A; Selvam TP
    Radiat Prot Dosimetry; 2021 Dec; 197(3-4):202-211. PubMed ID: 34977947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation.
    Maire D; Billard J; Bosson G; Bourrion O; Guillaudin O; Lamblin J; Lebreton L; Mayet F; Médard J; Muraz JF; Richer JP; Riffard Q; Santos D
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):245-8. PubMed ID: 24594906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.
    Olsher RH; McLean TD; Justus AL; Devine RT; Gadd MS
    Radiat Prot Dosimetry; 2010 Mar; 138(3):199-204. PubMed ID: 19887515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.
    Chow JC; Leung MK
    Med Phys; 2008 Jun; 35(6):2383-90. PubMed ID: 18649471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CHARACTERIZATION OF AN IN-HOUSE DEVELOPED MULTI-CYLINDRICAL MODERATOR NEUTRON SPECTROMETER.
    Liamsuwan T; Channuie J; Wonglee S; Kowatari M; Nishino S
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):1-4. PubMed ID: 29040746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room.
    Englbrecht FS; Trinkl S; Mares V; Rühm W; Wielunski M; Wilkens JJ; Hillbrand M; Parodi K
    Z Med Phys; 2021 May; 31(2):215-228. PubMed ID: 33622567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of germanium detectors employed for the measurement of radionuclides deposited in lungs using an experimental and Monte Carlo approach.
    Webb JL; Kramer GH
    Health Phys; 2001 Dec; 81(6):711-9. PubMed ID: 11725891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated response of a multi-element thick gas electron multiplier-based microdosimeter to high energy neutrons.
    Moslehi A; Raisali G
    Appl Radiat Isot; 2018 Jul; 137():236-240. PubMed ID: 29656231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A directional dose equivalent monitor for neutrons.
    d'Errico F; Alberts WG; Curzio G; Matzke M; Nath R; Siebert BR
    Radiat Prot Dosimetry; 2001; 93(4):315-24. PubMed ID: 11548358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo commissioning of clinical electron beams using large field measurements.
    O'Shea TP; Sawkey DL; Foley MJ; Faddegon BA
    Phys Med Biol; 2010 Jul; 55(14):4083-105. PubMed ID: 20601775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.